Layered Tungsten Oxide-Based Hybrid Materials Incorporating Transition Metal Ions

Abstract

Layered organic-inorganic hybrid materials based on tungsten oxide as the inorganic framework have been synthesised to include transition metal ions. The resulting materials have been characterised using a number of techniques. X-ray diffraction shows an interlayer expansion with increasing alkyl length. Infrared vibrational spectra of manganese tungstate compounds indicate the organic amine molecules are neutrally charged, and the inorganic framework is unaltered as one varies the organic intercalate. The magnetic behaviour of the materials has also been explored using a SQUID magnetometer. In the manganese tungstate hybrids an antiferromagnetic (AF) transition is observed, which decreases in temperature as the inorganic interlayer spacing is increased. A nickel tungstate hybrid sample, on the other hand, displays a ferromagnetic transition, which we attribute to a canted AF phase below 15 K. In all cases studied, the behaviour can be mapped to an effective moment (Peff) per transition metal ion, which agrees well with theoretical and literature values for other transition metal oxides.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Hagenmuller, “Tungsten Bronzes, Vanadium Bronzes and Related Compounds”, Comprehensive Inorganic Chemistry ed. J.C. Bailar Jr., H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson (Pergamon, Oxford 1973) pp. 541–563.

    Google Scholar 

  2. 2.

    B.W. Brown and E. Banks, J. Am. Chem. Soc. 76 963 (1954).

    CAS  Article  Google Scholar 

  3. 3.

    K.S. Ahn, Y.C. Nah, Y.E. Sung, K.Y. Cho, S.S. Shin and J.K. Park, Appl. Phys. Lett. 81 3930 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    B. Mourey, M. Hareng, B. Dumont, J. Desseine and M. Figlarz, Eurodisplay Proceedings (1984) p. 223.

    Google Scholar 

  5. 5.

    J.D. Guo, K.P. Reis and M.S. Whittingham, Solid State Ionics 53 305 (1992).

    Article  Google Scholar 

  6. 6.

    J.T. Szymanski and A.C. Roberts, Can. Mineralogist 22 681 (2004).

    Google Scholar 

  7. 7.

    B. Ingham, S.V. Chong and J.L. Tallon in Self Assembled Nanostructured Materials, ed. Y. Lu, C.J. Brinker, M. Antonietti and C. Bai (Mater. Res. Soc. Proc. 775, San Francisco, CA, 2003) pp. 165–171.

  8. 8.

    K.C. Li and C.Y. Wang, Tungsten (Reinhold Publishing, 1947) pp. 253–260.

    Google Scholar 

  9. 9.

    S. Krustev, K. Ivanov and D. Klissurski, J. Alloys Compounds 182 189 (1992).

    CAS  Article  Google Scholar 

  10. 10.

    C. Belitto, F. Federici, M. Colapietro, G. Portalone and D. Caschera, Inorg. Chem. 41 709 (2004).

    Article  Google Scholar 

  11. 11.

    L.G. van Uittert,, R.C. Sherwood, H.J. Williams, J.J. Rubin and W.A. Bonner, J. Phys. Chem. Solids 25 1447 (1964).

    Article  Google Scholar 

  12. 12.

    N.W. Ashcroft and N.D. Mermin, Solid State Physics (Brooks Cole, 1976) pp. 656–658.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bridget Ingham.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ingham, B., Chong, S. & Tallon, J.L. Layered Tungsten Oxide-Based Hybrid Materials Incorporating Transition Metal Ions. MRS Online Proceedings Library 847, 473–478 (2004). https://doi.org/10.1557/PROC-847-EE9.31

Download citation