Simulations of Organic-tethered Silsesquioxane Nanocube Assemblies

Abstract

Polyhedral oligomeric silsesquioxane (POSS) based materials are a class of organic/inorganic hybrid nanomaterials with many interesting properties. Recent experiments have demonstrated that self-assembly of tethered POSS nanocubes is a promising route to the synthesis of novel materials with highly ordered, complex nanostructures. Using a coarsegrained model developed for tethered POSS, we perform molecular simulations of POSS molecules tethered by short polymers to investigate how the novel architecture of these hybrid building blocks can be exploited to achieve useful structures via self-assembly. We systematically explore the parameters that control the assembly process and the resulting equilibrium structures, including concentration, temperature, tethered POSS molecular topology, and solvent conditions. We report preliminary results of lamellar and cylindrical structures that are typically found in conventional block copolymer and surfactant systems, but with interesting modifications of the phase behavior caused by the bulkiness and cubic geometry of the POSS molecules.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. S. Grest and K. Kremer, “Molecular-Dynamics Simulation for Polymers in the Presence of a Heat Bath,” Physical Review A, vol. 33, pp. 3628–3631, 1986.

    CAS  Article  Google Scholar 

  2. [2]

    J. D. Lichtenhan, “Polyhedral Oligomeric Silsesquioxanes - Building-Blocks for Silsesquioxane-Based Polymers and Hybrid Materials,” Comments on Inorganic Chemistry, vol. 17, pp. 115–130, 1995.

    CAS  Article  Google Scholar 

  3. [3]

    A. Provatas and J. G. Matisons, “Silsesquioxanes: Synthesis and applications,” Trends in Polymer Science, vol. 5, pp. 327–332, 1997.

    CAS  Google Scholar 

  4. [4]

    R. M. Laine, C. X. Zhang, A. Sellinger, and L. Viculis, “Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids,” Applied Organometallic Chemistry, vol. 12, pp. 715–723, 1998.

    CAS  Article  Google Scholar 

  5. [5]

    C. Sanchez, G. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, and V. Cabuil, “Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks,” Chemistry of Materials, vol. 13, pp. 3061–3083, 2001.

    CAS  Article  Google Scholar 

  6. [6]

    J. D. Lichtenhan, J. J. Schwab, and W. A. Reinerth, “Nanostructured chemicals: A new era in chemical technology,” Chemical Innovation, vol. 31, pp. 3–5, 2001.

    CAS  Google Scholar 

  7. [7]

    F. J. Feher and T. A. Budzichowski, “Silasesquioxanes as Ligands in Inorganic and Organometallic Chemistry,” Polyhedron, vol. 14, pp. 3239–3253, 1995.

    CAS  Article  Google Scholar 

  8. [8]

    G. Z. Li, L. C. Wang, H. L. Ni, and C. U. Pittman, “Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review,” Journal of Inorganic and Organometallic Polymers, vol. 11, pp. 123–154, 2001.

    CAS  Article  Google Scholar 

  9. [9]

    R. Knischka, F. Dietsche, R. Hanselmann, H. Frey, R. Mulhaupt, and P. J. Lutz, “Silsesquioxane-based amphiphiles,” Langmuir, vol. 15, pp. 4752–4756, 1999.

    CAS  Article  Google Scholar 

  10. [10]

    K. M. Kim, D. K. Keum, and Y. Chujo, “Organic-inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane,” Macromolecules, vol. 36, pp. 867–875, 2003.

    CAS  Article  Google Scholar 

  11. [11]

    G. Cardoen, E. Burgaz, S. P. Gido, and E. B. Coughlin, “Self-assembly of organic-inorganic hybrid copolymers,” Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), vol. 44, pp. 252–253, 2003.

    CAS  Google Scholar 

  12. [12]

    B. S. Kim and P. T. Mather, “Amphiphilic telechelics incorporating polyhedral oligosilsesquioxane: 1. Synthesis and characterization,” Macromolecules, vol. 35, pp. 8378–8384, 2002.

    CAS  Article  Google Scholar 

  13. [13]

    C. M. Leu, G. M. Reddy, K. H. Wei, and C. F. Shu, “Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites,” Chemistry of Materials, vol. 15, pp. 2261–2265, 2003.

    CAS  Article  Google Scholar 

  14. [14]

    J. Pyun, K. Matyjaszewski, J. Wu, G. M. Kim, S. B. Chun, and P. T. Mather, “ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties,” Polymer, vol. 44, pp. 2739–2750, 2003.

    CAS  Article  Google Scholar 

  15. [15]

    L. Zheng, S. Hong, G. Cardoen, E. Burgaz, S. P. Gido, and E. B. Coughlin, “Polymer Nanocomposites through Controlled Self-Assembly of Cubic Silsesquioxane Scaffolds,” Macromolecules, vol. 37, pp. 8606–8611, 2004.

    CAS  Article  Google Scholar 

  16. [16]

    Z. L. Zhang, M. A. Horsch, M. H. Lamm, and S. C. Glotzer, “Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly,” Nano Letters, vol. 3, pp. 1341–1346, 2003.

    CAS  Article  Google Scholar 

  17. [17]

    M. H. Lamm, T. Chen, and S. C. Glotzer, “Simulated assembly of nanostructured organic/inorganic networks,” Nano Letters, vol. 3, pp. 989–994, 2003.

    CAS  Article  Google Scholar 

  18. [18]

    G. S. Grest, M. D. Lacasse, K. Kremer, and A. M. Gupta, “Efficient continuum model for simulating polymer blends and copolymers,” Journal of Chemical Physics, vol. 105, pp. 10583–10594, 1996.

    CAS  Article  Google Scholar 

  19. [19]

    X. Zhang, E. R. Chan, F. Qi, J. Kieffer, and S. C. Glotzer, manuscript in preparation.

  20. [20]

    E. R. Chan, X. Zhang, C.-Y. Lee, M. Neurock, and S. C. Glotzer, “Simulations of Tetra-Tethered Organic/Inorganic Nanocube-Polymer Assemblies,” Macromolecules, submitted.

  21. [21]

    L. C. Ho, E. R. Chan, X. Zhang, and S. C. Glotzer, manuscript in preparation.

  22. [22]

    F. S. Bates and G. H. Fredrickson, “Block copolymers - Designer soft materials,” Physics Today, vol. 52, pp. 32–38, 1999.

    CAS  Article  Google Scholar 

  23. [23]

    C. I. Huang and T. P. Lodge, “Self-consistent calculations of block copolymer solution phase behavior,” Macromolecules, vol. 31, pp. 3556–3565, 1998.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work has been provided by the National Science Foundation under grant no. DMR-0103399. We thank P.T. Cummings, J. Kieffer, C. McCabe, and M. Neurock for insightful conversations and collaboration as part of a larger effort to model POSS-polymer systems. We also thank the National Partnership for Advanced Computational Infrastructure (NPACI) and the University of Michigan Center for Advanced Computing for computer cluster support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sharon C. Glotzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chan, E.R., Ho, L.C. et al. Simulations of Organic-tethered Silsesquioxane Nanocube Assemblies. MRS Online Proceedings Library 847, 1–5 (2004). https://doi.org/10.1557/PROC-847-EE13.12

Download citation