Hybrid Materials Approach In The Design Of Electrodes And Electrolytes For Energy Storage And Conversion


The integration of electro-ionically active inorganic species in polymer matrices allows for the design of either electrode or electrolyte materials depending on the conducting or insulating properties of the polymer used. Conducting polymers can be used as the basis for a variety of hybrid electrode systems, whereas other polymers such as polybenzimidazoles have been used as electrolyte membranes by themselves or in combination with inorganic solid acids. We will discuss the general approach of hybrid design with this in mind and specifically we will describe our recent results on the use of polyoxometalate-containing hybrids in energy storage and conversion devices. In this respect we have worked in our laboratory on electrochemical supercapacitors and fuel cells but emphasis should be made on the broader potential fields of application of this type of materials.

This is a preview of subscription content, access via your institution.


  1. 1.

    M.T. Pope, “Heteropoly and Isopoly Oxometalates”. Springer-Verlag, Berlin. (1983).

    Google Scholar 

  2. 2.

    M.T. Pope, A. Müller, (Eds). “Polyoxometalates: From Platonic Solids to Antiretroviral Activity”, Vol. 10, Kluwer Academic Publishers, Dordretch (The Netherlands). (1994)

  3. 3.

    P. Gómez-Romero, N. Casañ-Pastor, J. Phys. Chem. 100, 12448–12454. (1996)

    Article  Google Scholar 

  4. 4.

    P. Gómez-Romero, Solid State Ionics, 101-3, 243–248. (1997)

    Google Scholar 

  5. 5.

    P. Gómez-Romero and C. Sánchez (Editors) “Functional Hybrid Materials” Wiley-VCH. Weinheim (2004)

    Google Scholar 

  6. 6.

    P. Gomez-Romero, “Hybrid Organic-Inorganic Materials. In Search of Synergic Activity”, Adv.Mater. 13 (3), 163–174. (2001)

    CAS  Article  Google Scholar 

  7. 7.

    P. Gómez-Romero, M. Lira-Cantú, Adv. Mater. 9 (2), 144. (1997)

    Article  Google Scholar 

  8. 8.

    P. Gómez-Romero*, M. Chojak, K. Cuentas-Gallegos, J. A. Asensio, P. Kulesza, N. Casañ-Pastor and M. Lira-Cantú. Electrochem. Commun., 5, 149–153. (2003)

    Article  Google Scholar 

  9. 9.

    K. Cuentas-Gallegos, M. Lira-Cantú, N. Casañ-Pastor and P. Gómez-Romero* Adv. Functional Materials, 2005 (in press)

    Google Scholar 

  10. 10.

    J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, J. Electrochem. Soc. 142, L121 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    J. J. Fontanella, M. C. Wintersgill, J. S. Wainright, R. F. Savinell, and M. Litt, Electrochimica Acta 43, 1289 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    J. A. Asensio, S. Borrós and P. Gómez-Romero,* J.Electrochem.Soc. 151 (2), A304–A310. (2004)

    CAS  Article  Google Scholar 

  13. 13.

    J. A. Asensio, S. Borrós and P. Gómez-Romero,* Electrochem. Commun., 5 (11), 967–972 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    J. A. Asensio, S. Borrós, and P. Gómez-Romero* accepted in Electrochimica Acta, (2004)

    Google Scholar 

Download references


Partial financial support from the Ministry of Science and Technology (Spain) (grant MAT2002- 04529-C03), from the Domingo Martínez Foundation, and fellowships from the ministry of Education (Spain) (to JAA) and from CONACYT (Mexico)( to KCG) are acknowledged.

Author information



Corresponding author

Correspondence to Karina Cuentas-Gallegos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuentas-Gallegos, K., Lira-Cantú, M., Casañ-Pastor, N. et al. Hybrid Materials Approach In The Design Of Electrodes And Electrolytes For Energy Storage And Conversion. MRS Online Proceedings Library 847, 114–121 (2004). https://doi.org/10.1557/PROC-847-EE12.4

Download citation