Linear and Nonlinear Transmission of Surface Plasmon Polaritons in an Optical Nanowire

Abstract

Polymer-metal composites offer the possibility of strongly enhanced nonlinear optical properties, which can be used for ultrasmall photonic devices. In this paper, we investigate numerically, by means of the finite-difference time-domain (FDTD) method, the propagation characteristics of surface plasmon polariton (SPP) modes excited in an optical nanowire consisting of a chain of either metallic cylinders or metallic spheres embedded in dielectric shells made of polymers (or other material) with optical Kerr nonlinearity. Our FDTD calculations incorporate both the nonlinear optical response of the dielectrics as well as the frequency dispersion of the metals, which is considered to obey a Drude-like model. It is demonstrated that, in the linear limit, the nanowire supports two SPP modes, a transverse and a longitudinal one, separated by Δλ = 20 nm. Furthermore, the dependence of the transmission of these SPP modes, on both the pulse peak power and Kerr coefficient of the dielectric shell, is investigated. Nonlinear optical phenomena, such as power-dependent mode frequency, switching, or optical limiting, are observed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Moroz, Phys. Rev. Lett. 83, 5274 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, Phys. Rev. Lett. 76, 2480 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    J.A. Porto, F.J. Garcia-Vidal, and J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999.

    CAS  Article  Google Scholar 

  4. 4.

    L. Martin-Moreno, F.J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    D.F. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 2059 (1999).

    Article  Google Scholar 

  6. 6.

    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    N. C. Panoiu and R. M. Osgood, Phys. Rev. E 68, 016611 (2003).

    Article  Google Scholar 

  8. 8.

    N. C. Panoiu and R. M. Osgood, Opt. Commun. 223, 331 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    C.J. Chen and R.M. Osgood, Phys. Rev. Lett. 50, 1705 (1983).

    CAS  Article  Google Scholar 

  14. 14.

    L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, Langmuir 12, 4329 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, Phys. Rev. B 50, 12052 (1994); R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    S. Nie and S. R. Emory, Science 275, 1102 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. J. Schifirin, J. Chem. Soc. Chem. Commun., 1901 (1997).

    Google Scholar 

  19. 19.

    D. Ricard, P. Roussignol, and C. Flytzanis, Opt. Lett. 10, 511 (1985).

    CAS  Article  Google Scholar 

  20. 20.

    N. C. Panoiu and R. M. Osgood, Nano Lett. 4(12), (2004) (in press).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the AFOSR STTR, Grant No FA9550-04-C-0022.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. C. Panoiu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panoiu, N.C., Osgood, R.M. Linear and Nonlinear Transmission of Surface Plasmon Polaritons in an Optical Nanowire. MRS Online Proceedings Library 846, 56 (2004). https://doi.org/10.1557/PROC-846-DD5.6

Download citation