Degradation of Ru\(\left( {{\text{bpy}}} \right)_3^{2 + }\)-based OLEDs

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Analysis of the possible mechanisms of degradation of Ru\(\left( {{\text{bpy}}} \right)_3^{2 + }\)-based OLEDs has led to the idea of quencher formation in the metalloorganic area close to the cathode. It has been suggested that the quencher results from an electrochemical process where one of the bipyridine (bpy) groups is replaced with two water molecules [1] or from reduction of Ru\(\left( {{\text{bpy}}} \right)_3^{2 + }\) to Ru\(\left( {{\text{bpy}}} \right)_3^0\) [2]. We have tested these and other degradation ideas for Ru\(\left( {{\text{bpy}}} \right)_3^{2 + }\)-based OLEDs, both prepared and tested with considerable exposure to the ambient environment and using materials and procedures that emphasize cost of preparation rather than overall efficiency. In order to understand the mechanisms involved in these particular devices, we have correlated changes in the devices' electrical and optical properties with MALDI-TOF mass spectra and UV-vis absorption and fluorescence spectra.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Kalyuzny, M. Buda, J. McNeil, P. Barbara, and A. Bard. J. Am.Chem.Soc. 125, 6272–6283 (2003).

    Article  Google Scholar 

  2. 2.

    K.M. Maness, H. Masui, R.M. Wightman, and R.W. Murray, J. Am. Chem. Soc. 119, 3987–3993 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    J. Slinker, D. Bernards, P.L. Houston, H.D. Abruna, S. Bernhard and G.G. Malliaras, Chem. Comm. 19, 2392 (2003).

    Article  Google Scholar 

  4. 4.

    J.C. Scott and G.G. Malliaras, in Conjugated Polymers, edited by G. Hadziioannou and P.F. van Hutten, (Wiley-VCH, New York, 1999), Chap. 13.

  5. 5.

    M. Buda, G. Kalyuzhny and A.J. Bard, J. Am. Chem. Soc., 124, 6090–6098 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    H. Rudmann, S. Shimada and M.F. Rubner, D.W. Oblas and J.E. Whitten, J. Appl. Phys., 92, 1576–1581 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    G. Gao and A.J. Bard, Chem. Mater. 14, 3465–3470 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara and A.J. Bard, J. Am. Chem. Soc. 125, 6272 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    H. Rudmann, and M.F. Rubner, J. Appl. Phys, 90, 4338 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    J.D. Slinker, G.G. Maliaras, S. Flores-Torres, H. D. Abruna, W. Chunwachirasiri and M.J. Winokur, J. Appl. Phys. 95, 4381 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    B. Carlson, G. D. Phelan, W. Kaminsky, L. R. Dalton, X. Jiang, S. Liu, and A. K. Y. Jen J. Am. Chem. Soc., 124, 14162–72 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project is supported by support from the National Science Foundation (DMR-0108497 and CHE-0216268) and the George I. Alden Trust. In addition generous support has been provided by Cornell University and Simmons College.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Velda Goldberg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldberg, V., Kaplan, M., Soltzberg, L. et al. Degradation of Ru\(\left( {{\text{bpy}}} \right)_3^{2 + }\)-based OLEDs. MRS Online Proceedings Library 846, 1111 (2004). https://doi.org/10.1557/PROC-846-DD11.11

Download citation