Effects of Deposition Angle on the Optical Properties of Helically Structured Films

Abstract

Glancing-angle deposition (GLAD) is a fabrication method capable of producing thin films with variable porosity. The GLAD process exploits substrate shadowing and limited adatom diffusion to create isolated columns of material that collectively comprise a highly porous thin film. GLAD can be used to create chiral or helical structures with a wide range of porosity through variation of the substrate tilt angle and controlled substrate rotation. We present the effect of the deposition angle on the selective transmittance of circularly polarized light in helical thin films fabricated with the GLAD process. Transmission measurements of titanium dioxide helical films reveal two regimes of enhanced selective transmittance: one corresponding to a substrate tilt angle that produces a maximum circular birefringence and another corresponding to strong anisotropic scattering.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Robbie, M.J. Brett, and A. Lakhtakia, J. Vac. Sci. Technol., A 13, 2991 (1995).

    Article  Google Scholar 

  2. 2.

    K. Robbie, M.J. Brett, and A. Lakhtakia, Nature, 384, 616 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    K. Robbie, and M.J. Brett, J. Vac. Sci. Technol., A15, 1460 (1997).

    Article  Google Scholar 

  4. 4.

    S.R. Kennedy, M.J. Brett, O. Toader, and S. John, Nano Lett., 2, 59 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    D. Vick, Y.Y. Tsui, M.J. Brett, and R. Fedosejevs, Thin Solid Films, 350, 49 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    J.C. Sit, D. Vick, K. Robbie, and M.J. Brett, J. Mater. Res., 14, 1197 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    K.D. Harris, A. Huizinga, and M.J. Brett, Electrochem. Solid-State Lett., 5, H27 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    J.J. Steele, K.D. Harris, and M.J. Brett, Mat. Res. Soc. Symp. Proc., 788, L11.4.1 (2004).

    Google Scholar 

  9. 9.

    K.D. Harris, D. Vick, E.J. Gonzalez, T. Smy, K. Robbie, and M.J. Brett, Surface & Coatings Technol., 138, 185 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    S.R. Kennedy, M.J. Brett, H. Miguez, O. Toader, and S. John, Photonics and Nanostructures, 1, 37 (2003).

    Article  Google Scholar 

  11. 11.

    A.C. van Popta, M.H. Hawkeye, J.C. Sit, M.J. Brett, Opt. Lett., 29, 2545 (2004).

    Article  Google Scholar 

  12. 12.

    K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, Appl. Opt., 42, 4212 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    S.R. Kennedy, and M.J. Brett, Appl. Opt., 42, 4573 (2003).

    Article  Google Scholar 

  14. 14.

    I. Hodgkinson, and Q. Wu, Advanced Materials, 13, 889 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    I. Hodgkinson, Q. Wu, and S. Collett, Appl. Opt., 40, 452 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Alberta Informatics Circle of Research Excellence (iCORE), and Micralyne Inc. The authors would also like to thank George Braybrook for the exceptional SEM imaging and the University of Alberta Micromachining and Nanofabrication Facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason B. Sorge.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sorge, J.B., van Popta, A.C., Sit, J.C. et al. Effects of Deposition Angle on the Optical Properties of Helically Structured Films. MRS Online Proceedings Library 846, 1017 (2004). https://doi.org/10.1557/PROC-846-DD10.17

Download citation