Skip to main content
Log in

Effects of Aging on the Toughness of Human Cortical Bone: A Study from Nano to Macro Size-Scales

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Age-related deterioration of both the fracture properties and the architecture of bone, coupled with increased life expectancy, are factors leading to the increasing incidence of bone fracture in the elderly. In order to facilitate the development of treatments which counter this increased fracture risk, a thorough understanding of how fracture properties degrade with age is required. The present study describes ex vivo fracture experiments to quantitatively assess the effects of aging on the fracture toughness of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, we depart from most previous studies by evaluating the toughness in terms of resistance-curve (R-curve) behavior, measured for bone taken from donors 34 to 99 years old. Using this approach, both the crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases ~40% from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. Evidence from x-ray synchrotron tomography is provided to support the hypothesis that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging at the microstructural level in the wake of the crack. Atomic force microscope-based nanoidentation of individual collagen fibers revealed changes at the collagen fibrillar level and deep-ultraviolet Raman spectroscopy showed that the cross-linking at the nanostructural level also changes with age. These results should provide for a better mechanistic understanding of the increased propensity for bone fracture with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Heaney, Bone 33, 457 (2003).

    Article  Google Scholar 

  2. W. Bonfield, J. Biomech. 20, 1071 (1987).

    Article  CAS  Google Scholar 

  3. J. D. Currey, K. Brear and P. Zioupos, J. Biomech. 29, 257 (1996).

    Article  CAS  Google Scholar 

  4. Y. N. Yeni, C. U. Brown, Z. Wang and T. L. Norman, Bone 21, 453 (1997).

    Article  CAS  Google Scholar 

  5. X. Wang, X. Shen, X. Li and C. M. Agrawal, Bone 31, 1 (2002).

    Article  Google Scholar 

  6. D. Vashishth, J. C. Behiri and W. Bonfield, J. Biomech. 30, 763 (1997).

    Article  CAS  Google Scholar 

  7. C. L. Malik, S. M. Stover, R. B. Martin and J. C. Gibeling, J. Biomech. 36, 191 (2003).

    Article  CAS  Google Scholar 

  8. G. Pezzotti and S. Sakakura, J. Biomech. 65A, 229 (2003).

    CAS  Google Scholar 

  9. R. K. Nalla, J. J. Kruzic and R. O. Ritchie, Bone 34, 790 (2004).

    Article  CAS  Google Scholar 

  10. R. K. Nalla, J. J. Kruzic, J. H. Kinney and R. O. Ritchie, Biomater. 26, 217 (2005).

    Article  CAS  Google Scholar 

  11. J. F. Knott, Fundamentals of fracture mechanics (Butterworth & Co., 1976).

    Google Scholar 

  12. R. O. Ritchie, Mater. Sci. Eng. 103, 15 (1988).

    Article  Google Scholar 

  13. A. G. Evans, J. Am. Ceramic Soc. 73, 187 (1990).

    Article  CAS  Google Scholar 

  14. J-Y. Rho, L. Kuhn-Spearing and P. Zioupos, Med. Eng. Physics 20, 92 (1998).

    Article  CAS  Google Scholar 

  15. J. H. Kinney and M. C. Nichols, Annu. Rev. Mater. Sci. 22, 121 (1992).

    Article  CAS  Google Scholar 

  16. G. M. Pharr, W. C. Oliver and F. R. Brotzen, J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  17. R. K. Nalla, M. Balooch, J. W. Ager III, J. J. Kruzic, J. H. Kinney and R. O. Ritchie, Acta Biomater. 1, 31 (2005).

    Article  CAS  Google Scholar 

  18. E. P. Paschalis, K. Verdelis, S. B. Doty, A. L. Boskey, R. Mendelsohn and M. Yamauchi, J. Bone Miner. Res. 16, 1821 (2001).

    Article  CAS  Google Scholar 

  19. A. Carden and M. D. Morris, J. Biomed. Opt. 5, 259 (2000).

    Article  CAS  Google Scholar 

  20. J. Bandekar, Biochimica et Biophysica Acta. 1120, 123 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (Grant No. 5R01 DE015633), and the Office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering, Department of Energy (No. DE-AC03-76SF00098 for JJK, JWA, MCM, ROR).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalla, R.K., Kruzic, J.J., Kinney, J.H. et al. Effects of Aging on the Toughness of Human Cortical Bone: A Study from Nano to Macro Size-Scales. MRS Online Proceedings Library 844, 10 (2004). https://doi.org/10.1557/PROC-844-Y8.10

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-844-Y8.10

Navigation