Skip to main content
Log in

Role of Biomechanics in Functional Tissue Engineering

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Functional tissue engineering establishes functional criteria for design and manufacture of the scaffold matrix for repair and replacement. It also provides useful and strategic information in mechanical stimulation of the cells seeded in the matrix before and after surgical placement to enhance the success of tissue engineering. Biomechanics plays an important role in accomplishing these requirements by assessing the in vivo environment and the material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Butler, S.A. Goldstein and F. Guilak, “Functional tissue engineering: the role of biomechanics,” J. Biomech. Eng. 122, 570–575 (2000).

    Article  CAS  Google Scholar 

  2. K.N. An, E.Y. Chao, W.P. Cooney and R.L. Linscheid, “Forces in the normal and abnormal hand,” J. Orthop. Res. 3, 202–211 (1985).

    Article  CAS  Google Scholar 

  3. K.N. An, K.R. Kaufman, and E.Y.S. Chao, “Physiological considerations of muscle force through the elbow joint,” J. Biomech. 22, 1249–1256 (1989).

    Article  CAS  Google Scholar 

  4. Z.P. Luo, H.C. Hsu, J.J. Grabowski, B.F. Morrey and K.N. An, Mechanical environment associated with rotator cuff tears, J. Shoulder Elbow Surg. 7, 616–620 (1998).

    Article  CAS  Google Scholar 

  5. K.N. An, S. Himeno, H. Tsumura, T. Kawai and E.Y.S. Chao, Pressure distribution on articular surfaces: Application to joint stability evaluation, J. Biomech. 23, 1013–1020 (1990).

    Article  CAS  Google Scholar 

  6. K.C. Westerlind, T.J. Wronski, E.L. Ritman, Z.P. Luo, K.N. An, N.H. Bells and R.T. Turner, Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain, Proc. Natl. Acad. Sci. 94, 4199–4204 (1997).

    Article  CAS  Google Scholar 

  7. G.C. Babis, K.N. An, E.Y.S. Chao, J.A. Rand and F.H. Sim, Double level osteotomy of the knee: A method to retain joint-line obliquity. J. Bone Joint Surg. 84A, 1380–1388 (2002).

    Article  Google Scholar 

  8. F. Schuind, M. Garcia-Elias, W.P. Cooney, III and K.N. An, Flexor tendon forces: In vivo measurements, J. Hand Surg. 17A, 291–298 (1992).

    Article  Google Scholar 

  9. J. Davis, K.R. Kaufman and R.L. Lieber, Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle, J. Biomech. 36, 505–512 (2003).

    Article  Google Scholar 

  10. G. Bergmann, F. Graichen and A. Rohlmann: Hip joint loading during walking and running, measured in two patients, J. Biomech. 26, 969–90 (1993).

    Article  CAS  Google Scholar 

  11. W.A. Hodge, K.L. Carlson, R.S. Fijan, R.G. Burgess, P.O. Riley, W.H. Harris and R.W. Mann, Contact pressures from an instrumented hip endoprosthesis. J. Bone Joint Surg. 71A, 1378–1386 (1989).

    Article  Google Scholar 

  12. B.W. Stansfield, A.C. Nicol, J.P. Paul, I.G. Kelly, F. Graichen and G. Bergmann, Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb, J. Biomech. 36, 929–936 (2003).

    Article  CAS  Google Scholar 

  13. R.A. Brand, D.R. Pedersen, D.T. Davy, G.M. Kotzar, K.G. Heiple and V.M. Goldberg, Comparison of hip force calculations and measurements in the same patient. J. Arthroplasty 9, 45–51 (1994).

    Article  CAS  Google Scholar 

  14. B.K. Bay, Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone, J. Orthop. Res. 13, 258–267 (1995).

    Article  CAS  Google Scholar 

  15. C. L. Gilchrist, J.Q. Xia, L.A. Setton and E.W. Hsu, High-resolution determination of soft tissue deformations using MRI and first-order texture correlation, IEEE Trans. Med. Imaging 23, 546–553 (2004).

    Article  Google Scholar 

  16. M.J. Bey, H.K. Song, F.W. Wehrli and L.J. Soslowsky, A. noncontact, nondestructive method for quantifying intratissue deformations and strains, J. Biomech. Eng. 124, 253–258 (2002).

    Article  CAS  Google Scholar 

  17. C.C. Ko, W.H. Douglas, R. DeLong, M.D. Rohrer, J.Q. Swift, J.S. Hodges, K.N. An and E.L. Ritman, Effects of implant healing time on crestal cone loss of a controlled-load dental implant, J. Dent. Res. 82, 585–591 (2003).

    Article  CAS  Google Scholar 

  18. H.R. Screen, D.A. Lee, D.L. Bader and J.C. Shelton, Development of a technique to determine strains in tendons using the cell nuclei, Biorheology 40, 361–368 (2003).

    CAS  Google Scholar 

  19. E. Yamamoto, K. Hayashi and N. Yamamoto, Mechanical properties of collagen fascicles from the rabbit patellar tendon, J. Biomech. Eng. 121, 124–131 (1999).

    Article  CAS  Google Scholar 

  20. Z.P. Luo and K.N. An, Development and validation of a nanometer manipulation and measurement system for biomechanical testing of single macro-molecules. J. Biomech. 31, 1075–1079 (1998).

    Article  CAS  Google Scholar 

  21. H. Miyazaki and K. Hayashi, Tensile tests of collagen fibers obtained from the rabbit patellar tendon, Biomed Microdev. 2, 151–157 (1999).

    Article  Google Scholar 

  22. Y.L. Sun, Z.P. Luo, A. Fertala and K.N. An, Direct quantification of the flexibility of type I collagen monomer, Biochem. Biophys. Res. Commun. 295, 382–386 (2002).

    Article  CAS  Google Scholar 

  23. K.N. An, Y.L. Sun and Z.P. Luo, Flexibility of type I collagen and mechanical property of connective tissue, Bioreheology 41, 239–246 (2004).

    CAS  Google Scholar 

  24. T.R. Jenkyn, R.L. Ehman and K.N. An, Noninvasive muscle tension measurement using the novel technique of magnetic resonance elastography (MRE), J. Biomech. 36, 1917–1921 (2003).

    Article  Google Scholar 

  25. R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca and A. Ehman, Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves, Science 269, 1854–1857 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, KN. Role of Biomechanics in Functional Tissue Engineering. MRS Online Proceedings Library 844, 11 (2004). https://doi.org/10.1557/PROC-844-Y1.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-844-Y1.1

Navigation