Complex Intermetallic Compounds: Defects, Disordering, Details

Abstract

A short overview will be given on the thermodynamics of the formation of thermal defects in intermetallic aluminides. We focus on thermal vacancies studied by the specific techniques of positron annihilation and time-differential dilatometry and discuss the results together with self-diffusion data. We then demonstrate that these techniques can be employed for studying vacancies in compound semiconductors specifically. Furthermore, structural order-disorder phase transitions can be investigated from an atomistic point of view by making use of positron annihilation as shown in the exemplary case of decagonal Al-Ni-Co quasicrystals.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.H. Westbrook and R.L. Fleischer (eds.), Intermetallic Compounds: 4 Vols., J. Wiley and Sons, Chichester, UK, (2000).

  2. 2.

    R.J. Wasilewski, S.R. Butler, and J.E. Hanlon, J. Appl. Phys. 39, 4234 (1968)

    CAS  Article  Google Scholar 

  3. 3.

    H.-E. Schaefer, K. Frenner, and R. Würschum, Intermetallics 7, 277 (1999)

    CAS  Article  Google Scholar 

  4. 4.

    W. Sprengel, M.A. Müller, and H.-E. Schaefer, Diffusion and Defect Structures, in: Intermetallic Compounds, Vol. 3, Principles and Practice, (eds.) J.H. Westbrook and R.L. Fleischer, J. Wiley and Sons, Chichester, UK, (2002), 275–293

    Google Scholar 

  5. 5.

    W. Sprengel, F. Baier, K. Sato, X.Y. Zhang, K. Reimann, R. Würschum, R. Sterzel, W. Assmus, F. Frey, and H.-E. Schaefer, in: Quasicrystals: Structure and Properties, Wiley-VCH, Weinheim, Germany (2003), p. 414–429

    Google Scholar 

  6. 6.

    H.-E. Schaefer, K. Frenner, and R. Würschum, Phys. Rev. Lett. 82, 948 (1999)

    CAS  Article  Google Scholar 

  7. 7.

    H.-E. Schaefer, Phys. Stat. Sol. (a) 102, 47 (1987)

    CAS  Article  Google Scholar 

  8. 8.

    X.Y. Zhang, W. Sprengel, T.E.M. Staab, H. Inui, and H.-E. Schaefer, Phys. Rev. Lett. 92, 155502 (2004)

    CAS  Article  Google Scholar 

  9. 9.

    P.E. Mijnarends, A.C Kruseman, A Van Veen, H Schut and A Bansil, J. Phys.–Cond. Matter 10, 10383 (1998)

    CAS  Article  Google Scholar 

  10. 9a.

    E. Partyka, W. Sprengel, H. Weigand, H.-E. Schaefer, F. Krogh, and G. Kostrorz, to be published

  11. 10.

    X. Y. Zhang, W. Sprengel, K.J. Reichle, K. Blaurock, R. Henes, and H.-E. Schaefer, Phys Rev. B 68, 224102 (2003)

    Article  Google Scholar 

  12. 11.

    R Kerl, J. Wolff, and Th. Hehenkamp, Intermetallics 7, 301 (1999)

    CAS  Article  Google Scholar 

  13. 12.

    J. Wolff, A. Broska, M. Franz, B. Köhler, and Th. Hehenkamp, Mater. Sci. Forum 255–257, 593 (1999)

    Google Scholar 

  14. 13.

    M. Eggersmann, Dr. rer. nat. thesis, Münster University, Germany (1998)

  15. 14.

    M. Eggersmann and H. Mehrer, Metallofizika I Noveshie Tekhnologii 21, 70 (1999)

    CAS  Google Scholar 

  16. 15.

    R. Nakamura and Y. Iijima, Philos. Mag. 84, 1906 (2004)

    Article  Google Scholar 

  17. 16.

    G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag, and H. Mehrer, Z. Metallkd. 86, 131 (1996)

    Google Scholar 

  18. 17.

    M. Salamon, A Strohm, T. Voss, P. Laitinen, I. Riihimäki, S. Divinski, W. Frank, J. Räisänen, and H. Mehrer, Philos. Mag. 84, 737 (2004)

    CAS  Article  Google Scholar 

  19. 18.

    M. Salamon and H. Mehrer, Defect Diffus. Forum 216–217, 161 (2003)

    Article  Google Scholar 

  20. 19.

    A. A. Rempel, W. Sprengel, K. Blaurock, K.J. Reichle, J. Major, and H.-E. Schaefer, Phys. Rev. Lett. 89, 185501 (2002)

    CAS  Article  Google Scholar 

  21. 20.

    K. Sato, F. Baier, W. Sprengel, R. Würschum, and H.-E. Schaefer, Phys. Rev. Lett. 92, 127403 (2004)

    CAS  Article  Google Scholar 

  22. 21.

    S. Ritsch, C. Beeli, H.-U. Nissen, T. Gödecke, M. Scheffer, and R. Lück, Philos. Mag. Lett. 78, 67 (1998)

    CAS  Article  Google Scholar 

  23. 22.

    K. Hiraga, T. Ohsuna, W. Sun, and K. Sugiyama, Mater. Trans., JIM 42, 2354 (2001)

    CAS  Article  Google Scholar 

  24. 23.

    Y. Yan and S. Pennycook, Phys. Rev. Lett. 86, 1542 (2001)

    CAS  Article  Google Scholar 

  25. 24.

    H. Takakura, A. Yamamoto, and A. P. Tsai, Acta Crystallogr. Sect. A 57, 576 (2001)

    CAS  Article  Google Scholar 

  26. 25.

    A. Cervellino, T. Haibach, and W. Steurer, Acta Crystallogr. Sect. B 58, 8 (2002)

    Article  Google Scholar 

  27. 26.

    C. L. Henley, M. Mihalkovič, and M. Widom, J. Alloys Compd. 342, 221 (2002)

    CAS  Article  Google Scholar 

  28. 27.

    M. Mihalkovič, I. Al-Lehyani, E. Cockayne, C. H. Henley, N. Moghadam, J. A. Moriarty, Y. Wang, and M. Widom, Phys. Rev. B 65, 104205 (2002)

    Article  Google Scholar 

  29. 28.

    Y. Yan and S. Pennycook, Nature 403, 266 (1999)

    Article  Google Scholar 

  30. 29.

    F. Frey, E. Weidner, K. Hradil, M. de Boissieu, A. Letonblon, G. McIntyre, R. Currat, and A.P. Tsai, J. Alloys Compd 342, 57 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

H.-E. Schaefer is indebted to Prof. Y. Shirai for his outstanding hospitality during the teaching and research period at Osaka University, Japan. The financial support of the 21st Century COE Program “Center of Excellence for Advanced Structural and Functional Materials Design”, Osaka University, Japan is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Sprengel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sprengel, W., Baier, F., Sato, K. et al. Complex Intermetallic Compounds: Defects, Disordering, Details. MRS Online Proceedings Library 842, 73–82 (2004). https://doi.org/10.1557/PROC-842-S1.6

Download citation