1MeV electron irradiation effects of GaAs/Si solar cells

Abstract

The characteristics of 1 MeV electron irradiated GaAs solar cells grown on GaAs and Si substrates are studied under dark and AM 0 conditions. The short circuit currents (Isc) for GaAs/GaAs cell and GaAs/Si cell have been decreased at higher fluences. The degradation rate of Voc and Pmax for GaAs/Si is slower than that of GaAs/GaAs at the fluence 1×1016 cm−2. This is due to the high radiation resistance of saturation current. It has been due to slow generation of arsnic vacancies related defect (VAs) in the GaAs/Si solar cell, which is determined by photoluminescence analyses and deep level transient spectroscopy.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Knechtli, R. Y. Loo, and G. S. Kamath, IEEE Trans. Electron Dev. ED–31, 577(1984).

    Article  Google Scholar 

  2. [2]

    T. Soga, K. Baskar, T. Kato, T. Jimbo, and M. Umeno, J. Cryst. Growth 174, (1997) 579.

    Article  CAS  Google Scholar 

  3. [3]

    M. Yamaguchi: J. Mater. Res. 6(1991) 376.

    Article  CAS  Google Scholar 

  4. [4]

    M. Imaizumi, S. Matsuda, M. Yamaguchi, and T. Ohara, Proc., 28 th IEEE Photovoltaic Specialists Conference, Sep 2000, Anchorage, USA. P.776.

    Google Scholar 

  5. [5]

    Y. Itoh, M. Yamaguchi, T. Nishioka and A. Yamamoto J. Appl. Phys., 61 (1987) 762.

    Article  Google Scholar 

  6. [6]

    J. C Bourgoin, H. J von Bardeleben, J. Appl Phys 64, (1988) R65–R91.

    Article  CAS  Google Scholar 

  7. [7]

    N.G. Goswami, R.C Newman, and J.E. Whitehouse Solid State Communications, vol. 40, (1981) 473.

    Article  CAS  Google Scholar 

  8. [8]

    T. Mattile and R. M. Nieminen, Phys. Rev lett., 74, (1995) 2721.

    Article  Google Scholar 

  9. [9]

    T. Soga, N. Chandrasekaran, M. Imaizumi, Y. Inuzuka, H. Taguchi, T. Jimbo and S. Matsuda. Jpn. J. Appl. Phys. 42 (2003) 1054.

    Article  CAS  Google Scholar 

  10. [10]

    M. Akiyama, Y. Kawarada and K. Kaminishi, J. Crystal Growth 68 (1984) 21.

    Article  CAS  Google Scholar 

  11. [11]

    S.M. Sze, Semiconductor Devices: physics and Technology. John Willey & sons USA (2002).

    Google Scholar 

  12. [12]

    D. C. Look and J. R. Sizlove, J. Appl. Phys 62, (1987) 3660.

    Article  CAS  Google Scholar 

  13. [13]

    G. M. Martin, A. Mintonneau, and A. Mircea, Electron Lett. 13, (1977) 191.

    Article  CAS  Google Scholar 

  14. [14]

    D. Stievnard, X. Bboddaert, J. C. Bourgoin, H. J. Bardeleben, Phycal Review B, 41, (1990) 5271.

    Article  Google Scholar 

  15. [15]

    H. Yousefi, J. B. Webb, R. Rousin, S. M. Kanna. J. Electron Mater. 24, (1995) 15.

    Article  CAS  Google Scholar 

  16. [16]

    E. K Kim, H.Y. cho, Y. Kim, M.S. Kim, H.S. Kim and S.k Min, J. Appl. Phy′s. 67, (1990) 2554.

    Article  Google Scholar 

  17. [17]

    Y. Huang, P. Y. Yu, H. Lee and S. Wang Appl. Phys. Lett., 52, 579 (1988)

    Article  CAS  Google Scholar 

  18. [18]

    S. M. Khanna, A. Houdayer, A. Jorio, C. Carlone, M. Parenteasu, and J. W. Gerdes, Jr., IEEE Trans. Nucl. Sci. 43, (1996) 2601.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (N.Chandrasekarn) great fully acknowledges the Japanese Government for the award of Japanese Government scholarship. This work was supported by 21st COE program of Nagoya Institute of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Chandrasekaran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandrasekaran, N., Soga, T., Inuzuka, Y. et al. 1MeV electron irradiation effects of GaAs/Si solar cells. MRS Online Proceedings Library 836, L6.7 (2004). https://doi.org/10.1557/PROC-836-L6.7

Download citation