Metal-oxide Semiconductor Field-effect Transistors using Single ZnO Nanowire

Abstract

Single ZnO nanowire metal-oxide semiconductor field effect transistors (MOSFETs) were fabricated using nanowires grown by site selective Molecular Beam Epitaxy. When measured in the dark at 25°C,the depletion-mode transistors exhibit good saturation behavior, a threshold voltage of ~-3V and a maximum transconductance of order 0.3 mS/mm.Under ultra-violet (366nm) illumination, the drain-source current increase by approximately a factor of 5 and the maximum transconductance is ~ 5 mS/mm. The channel mobility is estimated to be ~3 cm2 /V.s, which is comparable to that reported for thin film ZnO enhancement mode MOSFETs and the on/off ratio was ~25 in the dark and ~125 under UV illumination.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.L. Hoffman, J. Appl.Phys. 95, 5813 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Ohya, T. Niwa, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001).

    Google Scholar 

  3. 3.

    Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, Appl. Phys. Lett. 84, 2685 (2004)

    CAS  Article  Google Scholar 

  4. 4.

    S. Masuda, K. Kitamura, Y. Okumura, and S. Miyatake, J. Appl. Phys. 93, 1624 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr, Appl. Phys. Lett. 82, 1117 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    J. F. Wager, Science 300, 1245 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, and M. Kawasaki, Jpn. J. Appl. Phys., Part 2 42, L347 (2003)

    Google Scholar 

  10. 10.

    Hiromichi Ohta and Hideo Hosono, Materials Today 7, 42 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    R.L. Hoffman, J. Appl.Phys. 95, 5813 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Ohya, T. Niwa, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001).

    Google Scholar 

  13. 13.

    Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, Appl. Phys. Lett. 84, 2685 (2004)

    CAS  Article  Google Scholar 

  14. 14.

    S. Masuda, K. Kitamura, Y. Okumura, and S. Miyatake, J. Appl. Phys. 93, 1624 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr, Appl. Phys. Lett. 82, 1117 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    J. F. Wager, Science 300, 1245 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003)

    CAS  Article  Google Scholar 

  19. 19.

    Hiromichi Ohta and Hideo Hosono, Materials Today 7, 42 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, Appl.Phys.Lett. 84, 3654 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, X.G. Gao and J.P. Li, Appl.Phys.Lett. 84, 3654 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    K. Keem, H. Kim, G.T. Kim, J.S. Lee, B. Min, K. Cho, M.Y. Sung and S. Kim, Appl.Phys.Lett. 84, 4376 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    D.C. Look, Mater. Sci. Eng.} B80, 383 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    Z.L. Wang, Materials Today 7, 26 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Y.W. Heo, V. Varadarjan, M. Kaufman, K. Kim, D.P. Norton, F. Ren and P.H. Fleming, Appl.Phys.Lett. 81, 3046 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm and T. Steiner, Materials Today 7, 34 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work at UF is partially supported by AFOSR grant under grant number F49620-03-1-0370, by the Army Research Office under grant no. DAAD19-01-1-0603, the Army Research Laboratory, AFOSR (F49620-02-1-0366, G. Witt and F49620-03-1-0370), NSF(CTS-0301178, monitored by Dr. M. Burka and Dr. D. Senich), by NASA Kennedy Space Center Grant NAG 10-316 monitored by Mr. Daniel E. Fitch, and the National Science Foundation (DMR 0400416, DMR-0305228 Dr.L.Hess).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young-Woo Heo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heo, YW., Kang, B.S., Tien, L.C. et al. Metal-oxide Semiconductor Field-effect Transistors using Single ZnO Nanowire. MRS Online Proceedings Library 829, 350–355 (2004). https://doi.org/10.1557/PROC-829-B8.1

Download citation