High Quality MPCVD Epitaxial Diamond Film for Power Device Application


As a wide bandgap (5.47 eV) semiconductor material, single crystal diamond has high electron mobility (reportedly between 2000 and 4400 cm2V−1s−1), high electron saturation velocity (2×107 cms−1), high breakdown voltage (>107 Vcm−1), and high thermal conductivity (>21 Wcm−1K−1). Diamond-based semiconductor devices offer the potential of operation at high voltages, power levels, temperatures and under extreme radiation conditions. In this work, we present our effort to grow high quality homo-epitaxial diamond films on (100)-single crystal diamond substrates by microwave plasma chemical vapor deposition (MPCVD). The growth rate can vary from 0.01 to 100 micrometers per hour, depending on growth conditions, doping, and quality; and using a “lift-off” process, free-standing homo-epi films with remarkably low p-type doping (1×1014–1×1017 cm−3) and exceptionally low compensation ~ 1×101 cm−3 have been made. Vertical and lateral structure high voltage diamond Schottky rectifiers have been built for frequency dependent capacitance-voltage (C-V), and current-voltage (I-V) measurements. A breakdown voltage of 8 kV at 100 μm distance and 12.4 kV at 300 μm distance is recorded for lateral structure devices without Ohmic contact (back to back Schottky contacts), while an un-optimized vertical device with an back-side Ohmic contact has demonstrated a forward voltage drop of 7 V at 18 A/cm2 in a device that can only block 600 V. New test results show 3.7 kV blocking voltage vertical devices on 20 μm freestanding MPCVD diamond film. This data shows that the quality of diamond film extremely affect the electrical properties of the built devices.

This is a preview of subscription content, access via your institution.


  1. [1]

    Sze S M (ed), Physics of Semiconductor Devices 2nd ed. (New York: Wiley, 1981) p 849.

    Google Scholar 

  2. [2]

    M. W. Geis, D. D. Rathamn, D. J. Ehrlich, R. A. Murphy, and W. T. Lindley, IEEE Electron Device Lett. 8, 341–344 (1987).

    Article  Google Scholar 

  3. [3]

    S. Yamanaka, D. Takeuchi, H. Watanabe, H. Okushi, and K. Kajimura, Diam. Relat. Mater. 9, 956–9 (2000).

    CAS  Article  Google Scholar 

  4. [4]

    T. P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Langm, and R. J. Gutmann, Solid-State Electron. 44, 277–301 (2000).

    CAS  Article  Google Scholar 

  5. [5]

    J. E. Butler, M. W. Geis, K. E. Krohn, J. Deneault Jr S. Lawless, T. M. Lyszczarz, D. Flechtner, and R. Wright, Semicond. Sci. Technol., 18, S67, (2003).

    CAS  Article  Google Scholar 

  6. [6]

    D. J. Twitchen, A. J. Whitehead, S. E. Coe, J. Isberg, J. Hammersberg, T. Wikstrom, and E. Johansson, IEEE Trans. Electron Devices, 51, 826, (2004).

    CAS  Article  Google Scholar 

  7. [7]

    G. K. Reeves, Solid State Electronics, 23, 487 (1980).

    CAS  Article  Google Scholar 

  8. [8]

    A. Ellison, B. Magnusson, B. Sundqvist, G. Pozina, J. P. Bergman, E. Janzen, and A. Vehanen, Materials Science Forum, 457–460, 9–14 (2004)

    Article  Google Scholar 

  9. [9]

    B. J. Baliga, Power Semiconductor Devices, PWS Publishing Company (1996).

    Google Scholar 

  10. [10]

    J. Isberg, J. Hammersberg, E. Johansson, T. WikstrÖm, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science, 297, 1670 (2002).

    CAS  Article  Google Scholar 

  11. [11]

    W. Huang, T.P. Chow, J. Yang and J. E. Butler, IEEE Lester Eastman Conference on High performance Devices (Oral report and also submit for proceedings, Troy, NY, Aug. 2004).

    Google Scholar 

  12. [12]

    M. Marchywka, P. E. Vestyck Jr, D. J. Pehrsson, and D. Moses, Appl. Phys. Lett. 63, 3521 (1993).

    CAS  Article  Google Scholar 

Download references


Dr. J. E. Butler and Dr. J. Yang would like to thank the financial support of ONR/NRL and DARPA/MTO and Dr. T. P. Chow and Mr. W. Huang would like to acknowledge ONR/DARPA (contract # N00014-01-1-0784) for providing funding for the design, fabrication, and testing of these high voltage diodes.

Author information



Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, J., Huang, W., Chow, T.P. et al. High Quality MPCVD Epitaxial Diamond Film for Power Device Application. MRS Online Proceedings Library 829, 29–36 (2004). https://doi.org/10.1557/PROC-829-B7.2

Download citation