Electric Field Enhancement of Dark Current Generation in Detectors

Abstract

The performance of detectors and sensors is degraded by dark current generation, which is due to defects and impurities in the materials. Electric fields enhance the generation from the resulting deep levels. When the electric field is in the mid-105 V/cm range, the present work finds enhancements of the order of 100 or more for iron and gold in silicon. The activation energy of the generation rate as a function of temperature is seen to decrease when the electric field increases. Many detectors have pixels that form a charge packet before the detectors are read out. Since the presence of charge decreases the electric field, the electric field enhancement varies with time. This is modeled for iron in silicon with an illustrative charge versus electric field relation. The resulting activation energy is found to be barely affected.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G.A.M. Hurkx, D.B.M. Klassen, and M.P.G. Knuvers, IEEE Trans. Electron Dev. 39, 331 (1992).

    Article  Google Scholar 

  2. 2.

    W.P. Noble, S.H. Voldman, and A. Bryant, IEEE Trans. Electron Dev. 36, 720 (1989).

    Article  Google Scholar 

  3. 3.

    H.-D. Lee, S.-G. Lee, S.-H. Lee, Y.-J. Lee, and J.-M. Hwang, Jpn. J. Appl. Phys. 37, 1179 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys. 50, 5484 (1979).

    CAS  Article  Google Scholar 

  5. 5.

    J. E. Park, J. Shields, and D. K. Schroder, Solid-State Electron. 47, 855 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    S.H. Voldman, J.B. Johnson, T.D. Linton, and S.L. Titcomb, Tech. Digest of the International Electron Devices Meeting, 349 (1990).

    Google Scholar 

  7. 7.

    S. Makram-Ebeid and M. Lannoo, Phys. Rev. B 25, 6406 (1982).

    CAS  Article  Google Scholar 

  8. 8.

    A. Schenk, Solid-State Electron. 35, 1585 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    S.D. Ganichev, I.N. Yassievich, and W. Prettl, J. Phys.: Condens. Matter 14, R1263 (2002).

    CAS  Google Scholar 

  10. 10.

    J.R. Morante, J.E. Carceller, P. Cartujo, and J.J. Barbolla, Phys. Status Solidi B 111, 375 (1982).

    CAS  Article  Google Scholar 

  11. 11.

    Manual for the computer program DESSIS of Integrated Systems Engineering, version 9.0, (2003) Ch. 5.

  12. 12.

    O. K. B. Lui and P. Migliorato, Solid-State Electron. 41, 575 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    W.C. McColgin, J.P. Lavine, C.V. Stancampiano, and J.B. Russell, Mater. Res. Soc. Symp. Proc. 510, 475 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    K. Graff, Metal Impurities in Silicon-Device Fabrication, (Springer-Verlag, Berlin, 2000), 2nd rev. edition, p. 83.

    Google Scholar 

  15. 15.

    A.F. Tasch and C.T. Sah, Phys. Rev. B 1, 800 (1970).

    Article  Google Scholar 

  16. 16.

    M.J.J. Theunissen and F.J. List, Solid-State Electron. 28, 417 (1985).

    Article  Google Scholar 

  17. 17.

    S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, and E.R. Weber, Phys. Rev. B 61, 10361 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    A. Schenk, K. Irmscher, D. Suisky, R. Enderlein, F. Bechstedt, and H. Klose, Proc. 17th Int. Conf. on Physics of Semiconductors, 613 (1984).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James P. Lavine.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavine, J.P. Electric Field Enhancement of Dark Current Generation in Detectors. MRS Online Proceedings Library 829, 237–242 (2004). https://doi.org/10.1557/PROC-829-B2.7

Download citation