(110) InAs Quantum Dots: Growth, Single-Dot Luminescence and Cleaved Edge Alignment

Abstract

The formation of InAs self-assembled quantum dots on (110) GaAs substrates is demonstrated. These dots form with significantly lower densities than InAs dots grown on (100) GaAs. The low density growth mode of these InAs nanostructures allows for the fabrication of devices capable of electroluminescence from individual quantum dots. Such a device has been fabricated with conventional photolithography and its emission spectra characterized. Additionally, because GaAs cleaves naturally along the (110) crystal plane, the ability to grow InAs quantum dots on (110) GaAs substrates allows for the growth of these dots on the cleaved edges of GaAs first growth samples containing InGaAs strain layers of varying thickness and In fraction. 100% linear alignment of InAs quantum dots over these InGaAs strain layers is demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1

    D. Mui, D. Leonard, L. Coldren, and P. Petroff, Appl. Phys. Lett., 66, 1620–1622 (1995)

    CAS  Article  Google Scholar 

  2. 2

    S. Kohmoto, N. Nakamura, T. Ishikawa, and K. Asakawa, Appl. Phys. Lett., 73, 3488–3490 (1999)

    Article  Google Scholar 

  3. 3

    L. Pfeiffer, K. W. West, H. L. Stormer, J. P. Eisenstein, K. W. Baldwin, D. Gershoni, and J. Spector, Appl. Phys. Lett. 56, 1697–1699 (1990).

    CAS  Article  Google Scholar 

  4. 4

    H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, K.W. West, and J. Spector, Appl. Phys. Lett. 58, 725–727 (1991).

    Article  Google Scholar 

  5. 5

    J. Bauer, D. Schuh, E. Ucelli, R. Schulz, A. Kress, F. Hofbauer, J.J. Finley, and G. Abstreiter, Appl. Phys. Lett. 85, 4750–5752 (2004)

    CAS  Article  Google Scholar 

  6. 6

    D. Wasserman, S. A. Lyon, M. Hadjipanayi, A. Maciel, and J. F. Ryan, Appl. Phys. Lett. 83, 5050–5052 (2003)

    CAS  Article  Google Scholar 

  7. 7

    Q. Xie, Anupam Madhukar, Ping Chen, and Nobuhiko P. Kobayashi, Phys. Rev. Lett. 75, 2542–2545 (1995)

    CAS  Article  Google Scholar 

  8. 8

    G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., Phys. Rev. Lett. 76, 952–955 (1996)

    CAS  Article  Google Scholar 

  9. 9

    Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295 p.102–105 (2002)

    CAS  Article  Google Scholar 

  10. 10

    E. Dekel, D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 80, 4991–4994 (1998)

    CAS  Article  Google Scholar 

  11. 11

    Emil S. Koteles, B.S. Elman, C. Jagannath, and Y.J. Chen, Appl. Pys. Lett. 49, 1465–1467 (1986).

    CAS  Article  Google Scholar 

  12. 12

    A.E. Zhukov, A.R. Kovsh, A. Yu. Egorov, N.A. Maleev, V.M. Ustinov, B.V. Volovik, M.V. Maksimov, A.F. Tsatsul'nikov, N.N. Ledentsov, Yu. M. Shernyakov, A.V. Lunev, Yu. G. Musikhin, N.A. Bert, P.S. Kop'ev, and Zh. I. Alferov, Semiconductors 33, 153–155 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Zhizun Ma, Klaus Pierz, and Peter Hinze, Appl. Phys. Lett. 79, 2564–2566 (2001).

    CAS  Article  Google Scholar 

  14. 14

    F. Findeis, A. Zrenner, G. Bohm, and G. Abstreiter, Sol. State Comm., 114, 227–230 (2000).

    CAS  Article  Google Scholar 

  15. 15

    L. Landin, M.-E. Pistol, C. Pryor, M. Persson, L. Samuelson, and M. Miller, Phys. Rev. B 60, 16,640–16,646 (1999).

    CAS  Article  Google Scholar 

  16. 16

    D. Wasserman and S. A. Lyon, Appl. Phys. Lett., 85, 5352–5354 (2004)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

D. Wasserman was supported by a National Science Foundation Graduate Research Fellowship. This work was supported in part by the U.S. Army Research Office under grant #DAAG55-98-1-0270.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Wasserman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wasserman, D., Shaner, E.A., Lyon, S.A. et al. (110) InAs Quantum Dots: Growth, Single-Dot Luminescence and Cleaved Edge Alignment. MRS Online Proceedings Library 829, 102–113 (2004). https://doi.org/10.1557/PROC-829-B1.5

Download citation