Performance Assessments of Geologic Repositories for High-Level Nuclear Waste: Are they Necessary or Sufficient?


Performance assessments of geologic repositories for high-level nuclear waste will be used to determine regulatory compliance. The determination, that with a “reasonable expectation” regulatory limits are met, is based on the presumption that all of the relevant physical, chemical and biological processes have been modeled with enough accuracy to insure that a confident judgment of safety may be made. For the geologic disposal of high-level nuclear waste, this generally means that models must be capable of calculating radiation exposures to a specified population at distances of tens of kilometers for periods of tens to hundreds of thousands of years. A total system performance assessment will consist of a series of cascading models that are meant in toto to capture repository performance. There are numerous sources of uncertainty in these models: scenario uncertainty, conceptual model uncertainty and data uncertainty. These uncertainties will propagate through the analysis, and the uncertainty in the total system analysis must necessarily increase with time. For the highly-coupled, non-linear systems that are characteristic of many of the physical and chemical processes, one may anticipate emergent properties that cannot, in fact, be predicted. For all of these reasons, a performance assessment is not in and of itself a sufficient basis for determining the safety of a repository, but it remains a necessary part of the effort to develop a substantive understanding of a repository site.

This is a preview of subscription content, access via your institution.


  1. 1.

    Glimcher, P.W. Decisions, Uncertainty, and the Brain–The Science of Neuroeconomics (MIT Press, 2003) 375.

    Google Scholar 

  2. 2.

    Ottino, J.M. Nature, 427, 399 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Cipra, B. Science, 287, 960 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    Ewing, R.C., Tierney, M.S., Konikow, L.F., and Rechard, R.P., Risk Analysis, 19, 933 (1999).

    CAS  Google Scholar 

  5. 5.

    Hoffmann-Riem, H. and Wynne, B. Nature, 416, 123 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    Ewing, R.C., Palenik, C.S. and Konikow, L.F., Risk Analysis, (in press).

  7. 7.

    Rechard, R.P. Risk Analysis, 19, 763 (1999).

    CAS  Google Scholar 

  8. 8.

    Rasmussen, N.C. Reactor Safety Study: An Assessment of Accident Risk in U.S. Commercial Nuclear Power Plants, NUREG-75/014, WASH-1400 (U.S. Nuclear Regulatory Commission, Washington D.C., 1975).

    Google Scholar 

  9. 9.

    Hebel, L.C., Christensen, E.L., Donath, F.A., Falconer, W.E., Lidofsky, L.J., Moniz, E.J., Moss, T.H., Pigford, R.L., Pigford, T.H., Rochlin, G.I., Silsbee, R.H., Wrenn, M.E. Reviews in Modern Physics, 50, S1 (1978).

    Article  Google Scholar 

  10. 10.

    National Research Council, Disposition of High-Level Waste and Spent Nuclear Fuel (National Academy Press, 2001) 198.

    Google Scholar 

  11. 11.

    Garrick, B.J. and Kaplan, S. Radioactive and Mixed Waste–Risk as a Basis for Waste Classification (NCRP Symposium, Proceedings No. 2 (National Council on Radiation Protection and Measurements, Bethesda, Maryland) 59–73.

  12. 12.

    Bredehoeft, J.D., England, A.W., Stewart, D.B., Trask, N.J., Winograd, I.J. Geologic Disposal of High-Level Radioactive Wastes–Earth-Science Perspectives (Geological Survey Circular 779, 1978) 15.

    Google Scholar 

  13. 13.

    Palenik, C.S., Jensen, K., Ewing, R.C. MRS Proceedings, this volume.

  14. 14.

    Oreskes, N., Shrader-Frechette, K., Belitz, K. Science, 263, 641 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    Oreskes, N. and Belitz, K. Philosophical Issues in Model Assessment in Model Validation: Perspectives in Hydrological Science (John Wiley and Sons, Ltd., 2001) 23–41.

    Google Scholar 

  16. 16.

    Konikow, L.F. Ground Water, 24, 173 (1986).

    Article  Google Scholar 

  17. 17.

    Konikow, L.F. Ground Water, 30, 622 (1992).

    Article  Google Scholar 

  18. 18.

    Konikow, L.F. and Bredehoeft, J.D., Advances in Water Resources, 15, 75 (1992).

    Article  Google Scholar 

  19. 19.

    de Marsily, G., Combes, P. and Goblet, P. Advances in Water Resources, 15, 367 (1992).

    Article  Google Scholar 

  20. 20.

    Bredehoeft, J.D. and Konikow, L.F. Advances in Water Resources, 15, 371 (1992).

    Article  Google Scholar 

  21. 21.

    L.F. Konikow and R.C. Ewing, 37, 481 (1999).

  22. 22.

    Konikow, L.F. The Value of postaudits in Groundwater Model Applications in Groundwater Models for Resources Analysis and Management (Lewis Publishers, 1995) 59–78.

    Google Scholar 

  23. 23.

    Bredehoeft, J.D., Ground Water, 41, 571 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Bethke, C.M., Geochimica et Cosmochimica Acta, 56, 4315 (1992).

    CAS  Article  Google Scholar 

  25. 25.

    Wang, T., Bryan, C. Xu, H., and Gao, H. Geology, 31, 387 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Duro, L., J. Bruno, J., Jordana, S., Grive, M., Pon, J., Castilier, E., Beaucaire, C., Faure, M.H., Peña, J., Gimeno, M.J., del Nero, M., Ayora, C., Salas, J., Ledoux, E. and Made, B. (Nuclear Science and Technology Report EUR 19137 EN, 2000), 285.

  27. 27.

    Madé, B., Ledoux, E., Ayora, C., and Salas, J., “Coupled chemical transport modeling of uranium around the reaction zone at Bangombé (Oklo, Gabon),” Oklo working group Proceedings of the third and final EC-CEA workshop on Oklo–Phase II, held in Cadarache, France, ed. D. Louvat, V. Michaud, and H. von Maravic(Nuclear Science and Technology Report EUR 19137 EN, 2000), 307.

    Google Scholar 

  28. 28.

    Jensen, K.A., Palenik, C.S. and Ewing, R.C. Radiochimica Acta, 90, 761 (2002).

    CAS  Google Scholar 

  29. 29.

    Browning, L., Murphy, W.M., Manepally, C. and Fedors, R. Computers & Geosciences, 29, 247 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    Hughson, D.L., Browning, L., Murphy, W.M. and Green, R.T. Mater. Res. Soc. Proc., 608, 557 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Herrick, C. and Sarewitz, D. Science, Technology & Human Values, 25, 309 (2000).

    Article  Google Scholar 

  32. 32.

    Tal, A. Environmental Science & Technology, 31, 470 (1997).

    Article  Google Scholar 

  33. 33.

    Andersson, J. and Grundteknik, G. Data and Data Uncertainties, SKB Technical Rept. TR-99-09, (1999) 138.

    Google Scholar 

  34. 34.

    Apostolakis, G.A. Risk Analysis, 24, 515 (2004).

    Article  Google Scholar 

  35. 35.

    Mohanty, S. and Codell, R.B. Risk Analysis, 24, 537 (2004).

    Article  Google Scholar 

Download references


My use of Vancanson's duck is directly inspired by the discussion of the same by Paul Glimcher in his Decisions, Uncertainty, and the Brain - The Science of Neuroeconomics. I believe that much can be gained by a broad consideration of the properties and challenges of describing and modeling complex systems, and Glimcher's book is an exposition on these challenges. I have benefited greatly from conversations and the writings of Lenny Konikow, John Bredehoeft and Naomi Oreskes. I have also benefited from numerous discussions and debates with the advocates of performance assessments. I particularly thank John Garrick, Martin Tierny, John Helton and Peter Swift for their patience and insightful explanations. Although there is an enviable “quantitative” appeal with a performance assessment, my geologic background cautions me against an unqualified acceptance of such results.

Author information



Corresponding author

Correspondence to Rodney C. Ewing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ewing, R.C. Performance Assessments of Geologic Repositories for High-Level Nuclear Waste: Are they Necessary or Sufficient?. MRS Online Proceedings Library 824, 137–146 (2004).

Download citation