NanoLiterBioReactor: Monitoring of Long-Term Mammalian Cell Physiology at Nanofabricated Scale


There is a need for microminiaturized cell-culture environments, i.e., NanoLiter BioReactors (NBRs), for growing and maintaining populations of up to several hundred cultured mammalian cells in volumes three orders of magnitude smaller than those contained in standard multi-well screening plates. Reduced NBR volumes would not only shorten the time required for diffusive mixing, for achieving thermal equilibrium, and for cells to grow to confluence, but also simplify accurate cell counting, minimize required volumes of expensive analytical pharmaceuticals or toxins, and allow for thousands of culture chambers on a single instrumented chip. These devices would enable the development of a new class of miniature, automated cell- based bioanalysis arrays for monitoring the immediate environment of multiple cell lines and assessing the effects of drug or toxin exposure. The challenge, beyond that of optimizing the NBR physically, is to detect cellular response, provide appropriate control signals, and, eventually, facilitate closed-loop adjustments of the environment–e.g., to control temperature, pH, ionic concentration, etc., to maintain homeostasis, or to apply drugs or toxins followed by the adaptive administration of a selective toxin antidote. To characterize in a nonspecific manner the metabolic activity of cells, the biosensor elements of the NBR might include planar pH, dissolved oxygen, and redox potential sensors, or even an isothermal picocalorimeter (pC) to monitor thermodynamic response. Equipped with such sensors, the NBR could be used to perform short- and long-term cultivation of several mammalian cell lines in a perfused system, and to monitor their response to analytes in a massively parallel format. This approach will enable automated, parallel, and multiphasic monitoring of multiple cell lines for drug and toxicology screening. An added bonus is the possibility of studying cell populations with low cell counts whose constituents are completely detached from typical tissue environment, or populations in controlled physical and chemical gradients.

This is a preview of subscription content, access via your institution.


  1. 1.

    K. Slater, Cytotoxicity tests for high-throughput drug discovery, Curr. Opin. Biotechnol. 12, 70 (2001).

    Article  CAS  Google Scholar 

  2. 2.

    A. Prokop, Systems analysis and synthesis in biology and biotechnology, Int. J. Gen. Syst. 8, 1 (1982).

    Article  Google Scholar 

  3. 3.

    H. Becker and C. Gartner, Polymer based micro-reactors, Revs. Molec. Biotechnol. 82, 89 (2001).

    Article  CAS  Google Scholar 

  4. 4.

    K. Efimenko, W.E. Wallace and J. Genzer, Surface modification of Sylgard-184 Poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment, J. Coll. Interface Sci. 254, 306 (2002).

    Article  CAS  Google Scholar 

  5. 5.

    T.C. Mekel, V.I. Bondar, K. Nagai, B.D. Freeman and I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), J. Polymer Sci., Polymer Phys. B 38, 415 (2000).

    Article  Google Scholar 

  6. 6.

    M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm and L.G. Griffith, A microfabricated array bioreactor for perfused 3D liver culture, Biotechnol. Bioeng. 78, 257 (2002).

    Article  CAS  Google Scholar 

  7. 7.

    W.R. Tolbert, Ferfusion culture systems for production of mammalian cell biomolecules, in: Large Scale Mammalian Culture, J. Feder and W.R. Tolbert, eds. (Academic Press, New York, 1985) p. 97.

    Google Scholar 

  8. 9.

    M.W. Konrad, B. Storrie, D.A. Glaser and L.H. Thompson, Clonal variation in colony morphology and growth of CHO cells cultured on agar, Cell 10, 305 (1977).

    Article  CAS  Google Scholar 

  9. 8.

    G. Michalopoulos, H.D. Cianciulli, A.R. Novotny, A.D. Kligerman, S.C. Strom and R.L. Jirtle, Liver regeneration studies with rat hepatocytes in primary culture, Cancer Res. 42, 4673 (1982).

    CAS  Google Scholar 

  10. 10.

    T.G. van Kooten, J.F. Whitesides and A.F. von Recum, Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis, J. Biomed. Mater. Res. (Appl. Biomat.) 43, 1 (1998).

    Article  Google Scholar 

  11. 11.

    A. Prokop and R.K. Bajpai, The sensitivity of biocatalysts to hydrodynamic shear stress, in Advances in Applied Microbiology, A. Laskin, ed. (Academic Press, New York, 1992) vol. 37, p. 165.

    Article  CAS  Google Scholar 

  12. 12.

    P.A. Parsons-Wingerter and W.M. Saltzman, Growth versus function in the three-dimensional culture of single and aggregated hepatocytes within collagen gels, Biotechnol.Progr. 9, 600 (1993).

    Article  CAS  Google Scholar 

  13. 13.

    J. Voldman, M.L. Gray and M.A. Schmidt, Microfabrication in biology and medicine, Annu. Rev. Biomed. Eng. 1, 401 (1999).

    Article  CAS  Google Scholar 

  14. 14.

    T.J. Zieziulewicz, D.W. Unfricht, N. Hadjout, M.A. Lynes and D.A. Lawrence, Shrinking the biologic world–Nanobiotechnologies for toxicology, Toxicol. Sci. 74, 235 (2003).

    Article  CAS  Google Scholar 

  15. 15.

    A. Ghanem and M.L. Shuler, Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads, Biotechnol. Progr. 16, 471 (2000).

    Article  CAS  Google Scholar 

  16. 16.

    K. Viravaiya and M.L. Shuller, Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies, Progr. Biotechnol. xx, xx (2004).

    Google Scholar 

  17. 17.

    A. Sin, K.C. Chin, M.H. Jamil, Y. Kostov, G. Rao and M.L. Shuller, The design and fabrication of three-chamber microscale cell culture devices with integrated dissolved oxygen sensors, Biotechnol. Progr. 20, 338 (2004).

    Article  CAS  Google Scholar 

  18. 18.

    Y. Yang and R.R. Balcarcel, Determination of carbon dioxide production rates for mammalian cells in 24-well plates, BioTechniques 36, 286 (2004).

    Article  CAS  Google Scholar 

  19. 19.

    R.R. Balcarcel and L.M. Clark, Metabolic screening of mammalian cell cultures using well-plates, Biotechnol. Prog. 19, 98 (2003).

    Article  CAS  Google Scholar 

  20. 20.

    J.W. Allen and S.N. Ghatia, Formation of steady-state oxygen gradients in vitro, Biotechnol. Bioeng. 82, 253 (2003).

    Article  CAS  Google Scholar 

  21. 21.

    M.H. Maharbiz, W.J. Holtz, R.T. Howe and J.D. Keasling, Microbioreactor arrays with parametric control for hig-throughput experimentation, Biotechnol. Bioeng. 85, 376 (2004).

    Article  CAS  Google Scholar 

  22. 22.

    F. Hafner, Cytosensor microphysiometer: technology and recent applications, Biosensors Bioelectr. 15, 149 (2000).

    Article  CAS  Google Scholar 

  23. 23.

    S.E. Eklund, D. Taylor, E. Kozlov, A. Prokop and D.E. Cliffel, A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate, Anal. Chem. 76, 519 (2004).

    Article  CAS  Google Scholar 

  24. 24.

    S. Hediger, A. Sayah, J.D. Horisberger and M.A.M. Hijs, Modular microsystem for epithelial cell culture and electrical characterization, Biosensors Bioelectr. 16, 689 (2001).

    Article  CAS  Google Scholar 

  25. 25.

    K.F. Weibezahn, G. Knedlitschek, H. Dertinger, W. Bier, Th. Schller and K. Schubert, Reconstruction of tissue layers in mechanically processed microstructures, J. Exp. Clin. Cancer Res. 14 (Suppl 1), S41 (1995).

    Google Scholar 

  26. 26.

    A.R. Wheeler, W.R. Throndset, R.J. Whelan, A.M. Leach, R.N. Zare, Y.-H. Liao, K. Farrell, I.D. Manger and A. Daridon, Microfluidic device for single-cell analysis, Anal. Chem. 75, 3249 (2003).

    Article  CAS  Google Scholar 

  27. 27.

    E.W.H. Jager, C. Immerstrand, K.H. Peterson, J.-E. Magnusson, I. Lundstrom and O. Inganas, The cell clinic: Closable microvials for single cell studies, Biomed. Microdev. 4, 177 (2002).

    Article  Google Scholar 

  28. 28.

    E. Leclerc, Y. Sakai and T. Fujii, Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane), Biomed. Microdev. 5, 109 (2002).

    Article  Google Scholar 

  29. 29.

    W.J. Chang, D. Akin, M. Sedlak, M.R. Ladisch and R. Bashir, Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture, Biomed. Microdev. 6, 281 (2003).

    Article  Google Scholar 

  30. 30.

    M. Brischwein, E.R. Motrescu, E. Cabala, A.M. Otto, H. Grothe and B. Wolf, Functional cellular assays with multiparametric silicon sensor, Lab Chip 3, 234 (2003).

    Article  CAS  Google Scholar 

  31. 31.

    A. Grodrian, J. Metze, Th. Henkel, M. Roth and J.M. Kohler, Segmented flow generation by chip reactors for highly parallelized cell cultivation, in: Biomedical Applications of Micro- and Nanoengineering, D.V. Nicolau and A.P. Lee, eds., Proc. SPIE 4937, 174 (2002).

    Article  Google Scholar 

  32. 32.

    E.A. Johannessen, J.M. Weaver, L. Bourova, P. Svoboda, P.H. Gobbold and J.M. Cooper, Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays, Analyt. Chem. 74, 2190 (2002).

    Article  CAS  Google Scholar 

  33. 33.

    J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad and J.P. Vacanti, Microfabrication technology for vascularized tissue engineering, Biomed. Microdev. 4, 167 (2002).

    Article  CAS  Google Scholar 

  34. 34.

    W.-H. Huang, W. Chang, Z. Zhang, D.-W. Pang, Z.-L. Wang, J.K. Cheng and D.-F. Cui, Transport, location, and quantal release monitoring of single cells on a microfluidic device, Anal. Chem. 76, 483 (2004).

    Article  CAS  Google Scholar 

Download references


This work was supported by a National Institutes of Health grant 5 R43 RR016124-02 to NanoDelivery, Inc. Silicon wafers were kindly provided by Bridget Rogers of Chemical Engineering Department.

Author information



Corresponding author

Correspondence to Ales Prokop.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prokop, A., Prokop, Z., Schaffer, D. et al. NanoLiterBioReactor: Monitoring of Long-Term Mammalian Cell Physiology at Nanofabricated Scale. MRS Online Proceedings Library 823, W9.5/O5.5 (2004).

Download citation