Use of Soft Lithography for Multi-layer MicroMolding (MMM) of 3-D PCL Scaffolds for Tissue Engineering

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Tissue engineering scaffolds with precisely controlled geometries, particularly with surface features smaller than typical cell dimensions (1-10μm), can improve cellular adhesion and functionality. In this paper, soft lithography was used to fabricate polydimethylsiloxane (PDMS) stamps of arrays of parallel 5μm wide, 5μm deep grooves separated by 45 μm ridges, and an orthogonal grid of lines with the same geometry. Several methods were compared for the fabrication of 3-D multi-layer polycaprolactone (PCL) scaffolds with precise features. First, micromolding in capillaries (MIMIC) was used to deliver the polymer into the small grooves by capillarity; however the resultant lines were discontinuous and not able to form complete lines. Second, spin coating and oxygen plasma were combined to build 3-D scaffolds with the line pattern. The resultant scaffolds had good alignment and adhesion between layers; however, the upper layer collapsed due to the poor mechanical rigidity. Finally, a new multi-layer micromolding (MMM) method was developed and successfully applied with the grid pattern to fabricate 3-D scaffolds. Scanning electron microscopy (SEM) characterization showed that the multi-layered scaffolds had high porosity and precisely controlled 3-D structures.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Curtis, M. Riehle. Phys. Med. Biol. 46, R47 (2001).

    Article  CAS  Google Scholar 

  2. 2.

    A. Vats, N.S. Tolley, J.M. Polak, J.E. Clin. Otolaryngol. 28(3), 165 (2003).

    CAS  Google Scholar 

  3. 3.

    D.W. Hutmacher. Biomaterials 21, 2529 (2000).

    Article  CAS  Google Scholar 

  4. 4.

    A. Curtis, C. Wilkinson. Biomaterials 18(24), 1573 (1997).

    Article  CAS  Google Scholar 

  5. 5.

    L.E. Freed, J.C. Marquis, G. Vunjak-Novakovic, J. Emmanual, R. Langer. Biotechnol. Bioeng. 43, 605 (1994).

    Article  CAS  Google Scholar 

  6. 6.

    T. Ma, Y. Li, S.T. Yang. Biotechnol. Prog. 15, 715 (1999).

    Article  CAS  Google Scholar 

  7. 7.

    X.F. Walboomers, J.A. Jansen. Ondotology 89, 2 (2001).

    CAS  Google Scholar 

  8. 8.

    R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey. Biomaterials 20, 573 (1999).

    Article  CAS  Google Scholar 

  9. 9.

    Y. Ito. Biomaterials 20, 2333 (1999).

    Article  CAS  Google Scholar 

  10. 10.

    A.S.G. Curtis, M. Varde. J. Nat. Cancer. Res. Inst. 33, 15 (1964).

    CAS  Google Scholar 

  11. 11.

    S.N. Bhatia, C.S. Chen. Biomed. Microdevices 2(2), 131 (1999).

    Article  Google Scholar 

  12. 12.

    A.F. von Recum, T.G. van Kooten. J. Biomater. Sci. Polym. Ed. 7, 181 (1995).

    Article  Google Scholar 

  13. 13.

    D.M. Brunette, G.S. Kenner, T.R.L. Gould. J. Dent. Res. 62, 1045 (1983).

    Article  CAS  Google Scholar 

  14. 14.

    P. Clark. Biosens. Bioelec. 9, 657 (1994).

    Article  CAS  Google Scholar 

  15. 15.

    M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D.W. Wilkinson, A.S.G. Curtis. Experimental Cell Research 284, 274 (2003).

    Article  CAS  Google Scholar 

  16. 16.

    A. Folch, S. Mezzour, M. During, O. Hurtado, M. Toner, R. Muller. Biomed. Microdevices 2, 207 (2000).

    Article  Google Scholar 

  17. 17.

    T.A. Desai. Medical Engineering & Physics 22, 595 (2000).

    Article  CAS  Google Scholar 

  18. 18.

    G. Vozzi, C. Flaim, A. Ahluwalia, S. Bhatia. Biomaterials 24, 2533 (2003).

    Article  CAS  Google Scholar 

  19. 19.

    J.H. Ward, R. Bashir, N.A. Peppas. J. Biomed. Mater. Res. 56, 351 (2001).

    Article  CAS  Google Scholar 

  20. 20.

    V.A. Liu, S.N. Bhatia. Biomed. Microdevices. 4, 257 (2002).

    Article  CAS  Google Scholar 

  21. 21.

    Y. Yan, Z. Xiong, Y. Hu, S. Wang, R. Zhang, C. Zhang. Materials Letters 57, 2623 (2003).

    Article  CAS  Google Scholar 

  22. 22.

    A. Janshoff, S. Künneke. European Biophysics Journal 29, 549 (2000).

    Article  CAS  Google Scholar 

  23. 23.

    S.H. Li, J.R. De Wijn, P. Layrolle, K. de Groot. J. Biomed. Mater. Res. 61, 109 (2002).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yang Sun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, Y., Ferrell, N. & Hansford, D.J. Use of Soft Lithography for Multi-layer MicroMolding (MMM) of 3-D PCL Scaffolds for Tissue Engineering. MRS Online Proceedings Library 823, W9.3/O5.3 (2004).

Download citation