Do Natural Silks Make Good Engineering Materials?

Abstract

Fast relaxation of stresses lower than the yield stress is demonstrated in Bombyx mori(silkworm) cocoon silk and Nephila clavipes (spider) major ampullate silk (MAS; dragline). Stress relaxation and creep make natural silk unsuitable as a long-term load-bearing material. Instead, silk-like materials are better suited to applications in which energy dissipation is important, and in which high loads need to be withstood on a once-off basis for only very short periods of time. Examples might include use as a ballistic material that arrests the penetration of fragments from the explosion of a pressure vessel, an aircraft luggage container, or a tyre. Treatment in a domestic microwave oven is shown to significantly reduce the rate of stress relaxation in both silkworm cocoon and spider MAS. Except for ductility, the tensile properties of cocoon silk measured in constant strain rate experiments are enhanced by this treatment. Initial experiments on MAS suggest that the tensile properties of this material also are enhanced by exposure to microwaves, in this case with the exception of initial modulus.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Viney, in Structural Biological Materials, edited by M. Elices (Pergamon / Elsevier Science, Oxford, 2000), pp. 293–333.

  2. 2.

    A. Lazaris, S. Arcidiacono, Y. Huang, J.F. Zhou, F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, C.N. Karatzas, Science 295, 472 (2002).

    Article  CAS  Google Scholar 

  3. 3.

    S. Kubik, S. Angew Chem. Int. Ed. Engl. 41, 2721 (2002).

    Article  CAS  Google Scholar 

  4. 4.

    F.I. Bell, I.J. McEwen, C. Viney, Nature 416, 37 (2002).

    Article  CAS  Google Scholar 

  5. 5.

    C. Smith, J. Ritchie, F.I. Bell, I.J. McEwen, C. Viney, J. Arachnol. 31, 421 (2003).

    Article  Google Scholar 

  6. 6.

    C. Viney, F.I. Bell, Cur. Opin. Solid State Mater. Sci., in press (2004).

    Google Scholar 

  7. 7.

    R.W. Work, Textile Res. J. 47, 650 (1977).

    Article  Google Scholar 

  8. 8.

    S.W. Watt, I.J. McEwen, C. Viney, Macromolecules 32, 8671 (1999).

    Article  CAS  Google Scholar 

  9. 9.

    B. Thiel, D. Kunkel, K. Guess, C. Viney, in Biomolecular Materials by Design, edited by M. Alper, H. Bayley, D. Kaplan, M. Navia, (Mater. Res. Soc. Proc. 330, Pittsburgh, PA, 1994

  10. 10.

    R.F. Foelix, Biology of Spiders, 1st ed. (Harvard University Press, Cambridge, MA, 1982).

    Google Scholar 

  11. 11.

    S. Carmichael, C. Viney, J. Appl. Polym. Sci. 72, 895 (1999).

    Article  CAS  Google Scholar 

  12. 12.

    J.P. Craven, R. Cripps, C. Viney, Comp. Part A: Appl. Sci. Manuf. 31, 653 (2000).

    Article  Google Scholar 

  13. 13.

    J. Pérez-Rigueiro, C. Viney, J. Llorca, J. M. Elices, J. Appl. Polym. Sci. 70, 2439 (1998).

    Article  Google Scholar 

  14. 14.

    P.T. Eles, C.A. Michal, Macromolecules 37, 1342 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from Heriot-Watt University (Studentship awarded to FIB), the Carnegie Trust for the Universities of Scotland (Vacation Scholarship for Undergraduates awarded to JR), and The Nuffield Foundation (Undergraduate Bursary awarded to CS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Viney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morrison, N.A., Bell, F.I., Beautrait, A. et al. Do Natural Silks Make Good Engineering Materials?. MRS Online Proceedings Library 823, W8.4 (2004). https://doi.org/10.1557/PROC-823-W8.4

Download citation