Grain Size Distribution Effect on Mechanical Behavior of Nanocrystalline Materials

Abstract

Grain size distribution effect on the mechanical behavior of NiTi and Vitroperm alloys were investigated. Yielding at significantly lower stresses than found in equiaxed counterparts, along with well defined strain hardening was observed in these nanocrystalline materials with large grains embedded in the matrix during tensile deformation at temperatures of 0.4Tm. At higher temperature the effect of grain size distribution on yield stress was not revealed while plasticity was increased in 50% in NiTi alloy with bimodal grain size structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.W. Hertzberg, Deformation and fracture mechanics of engineering materials, 3rd ed. New York: John Wiley and Sons; 1989. p.392.

    Google Scholar 

  2. 2.

    J.R. Weertman, in Nanostructured materials; processing, properties and applications, edited by C.C. Koch, Norwich: William Andrews Publishing; 2002. p.397-.

  3. 3.

    C.C. Koch, J. Metast. Nanocryst. Mater. 18, 9 (2003).

    CAS  Google Scholar 

  4. 4.

    Y.M. Wang, M.W. Chen, F. Zhou, E. Ma, Nature 419, 912 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Y.M. Wang, E. Ma, Mater. Sci. Eng. A, in press.

  6. 6.

    H. Van Swygenhoven, Z. Budrovich, P. M. Derlet, and A. Hasnaoui, in Processing and Properties of Structural Nanomaterials, MS&T 2003, Chicago, IL; USA; 9–12 Nov. 2003. pp.3–10.

    Google Scholar 

  7. 7.

    X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, Acta Mater. 50, 3995 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, Acta Mater. 50, 3527 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, A.V. Sergueeva, A.K. Mukherjee, Acta Mater. 50, 4823 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    V.L. Tellkamp, A. Melmed, E. Lavernia, Metall. Mater. Trans. A32, 2335 (2001).

    Article  Google Scholar 

  11. 11.

    D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia, Scripta Materialia 49, 297 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    M. Legros, B.R. Elliot, M.N. Rittner, J.R. Weertman, K.I. Hemker, Phil. Mag. A80, 1017 (2000).

    Article  Google Scholar 

  13. 13.

    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    A.V. Sergueeva, C. Song, R.Z. Valiev, A.K. Mukherjee, Mater. Sci. Eng. A339, 159 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    V. Yamakov, D. Wolf, S.R. Philpot, A.K. Mukherjee, and H. Gleiter, Nature Materials 1, 45 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    A. K. Mukherjee, in Creep Deformation: Fundamentals and Applications, edited by R. S. Mishra, TMS-AIME, Pittsburgh, PA (2002), p.3.

  17. 17.

    C.J. Youngdahl, J.R. Weertman, R.C. Hugo, and H.H. Kung, Scripta Mater. 44, 1475 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Science Foundation, Division of Materials Research for its financial support under grant NSF-DMR-0240144.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A.V. Sergueeva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sergueeva, A., Mara, N. & Mukherjee, A. Grain Size Distribution Effect on Mechanical Behavior of Nanocrystalline Materials. MRS Online Proceedings Library 821, 336–342 (2004). https://doi.org/10.1557/PROC-821-P9.8

Download citation