Hyperelastic effects in brittle materials failure


A fact that has been neglected in most theories of brittle fracture is that the elasticity of a solid clearly depends on its state of deformation. Metals will weaken, or soften, and polymers stiffen as the strain approaches the state of materials failure. It is only for infinitesimal deformation that the elastic moduli can be considered constant and the elasticity of the solid linear. We show by large-scale atomistic simulations that hyperelasticity, the elasticity of large strains, can play a governing role in the dynamics of fracture and that linear theory is incapable of capturing all phenomena. We introduce a new concept of a characteristic length scale χ for the energy flux near the crack tip and demonstrate that the local hyperelastic wave speed governs the crack speed when the hyperelastic zone approaches this energy length scale. The new length scale χ, heretofore missing in the existing theories of dynamic fracture, helps to form a comprehensive picture of crack dynamics, explaining super-Rayleigh and supersonic fracture. We further address the stability of cracks, and show agreement of the Yoffe criterion with the dynamics of cracks in harmonic systems. We find that softening hyperelastic effects lead to a decrease in critical instability speed, and stiffening hyperelastic effects leads to an increase in critical speed. The main conclusion is that hyperelasticity plays a critical role in forming a complete picture of dynamic fracture.

This is a preview of subscription content, access via your institution.


  1. 1.

    Freund, L.B. Dynamic Fracture Mechanics (Cambridge University Press, 1990).

    Google Scholar 

  2. 2.

    Fineberg, J. Gross, S.P., Marder, M., and Swinney, H.L. Phys. Rev. Lett. 67, 141–144 (1991).

    Article  Google Scholar 

  3. 3.

    Ravi-Chandar, K. Int. J. of Fract. 90, 83–102 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    Cramer T., Wanner A., Gumbsch P., Phys. Rev. Lett. 85 (4): 788–791 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Abraham, F.F., Brodbeck, D., Rudge, W.E., Xu, X. Phys. Rev. Lett. 73, 272–275 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    Falk, M.L., Needleman, A. and Rice, J.R. Journal de Phys. IV France 11, 5–43–50 (2001).

    Article  Google Scholar 

  7. 7.

    Gao, H. Mech. Phys. Solids 44, 1453–1474 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    Abraham F.F. et al. Proc. Nat. Acad. Sci. 99, 5777–5782 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Abraham, F.F., Gao, H., Phys. Rev. Lett. 84, 3113–3116 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Rountree, C.L. et al. Annu. Rev. Mater. Res. 32, 377–400 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Buehler, M.J. Abraham, F.F., Gao, H. Nature 49, 441–446 (2003)

    Google Scholar 

  12. 12.

    Zimmermann, J. Continuum and atomistic modeling of dislocation nucleation at crystal surface ledges. PhD Thesis, Stanford University (1999).

    Google Scholar 

  13. 13.

    Fratini S., Pla O., Gonzalez P., Guinea F., and Louis E. Phys. Rev. B. 66, 104104 (2002)

    Article  Google Scholar 

  14. 14.

    Petersan, P.J., Deegan, R.D., Marder, M., Swinney, H.L., under submission, preprint available at: http://arxiv.org/abs/cond-mat/0311422.

  15. 15.

    Broberg, K.B. Int. J. Sol. Struct. 32 (6-7), 883–896 (1995).

    Article  Google Scholar 

Download references


The simulations were carried out at the Max Planck Society Supercomputer Center in Munich. We gratefully acknowledge their support.

Author information



Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buehler, M.J., Abraham, F.F. & Gao, H. Hyperelastic effects in brittle materials failure. MRS Online Proceedings Library 821, 204–209 (2004). https://doi.org/10.1557/PROC-821-P6.3

Download citation