Nanocrystalline fcc metals: bridging experiments with simulations

Abstract

Atomistic simulations have provided unprecedented insight into the structural and mechanical properties of nanocrystalline materials, highlighting the role of the non-equilibrium grain boundary structure in both inter- and intra-grains deformation processes. One of the most important results is the capability of the nanosized grain boundary to act as a source and sink for dislocations. However the extrapolation of this knowledge to the experimental regime requires a clear understanding of the temporal and spatial scales of the modelling technique and a detailed structural characterisation of the simulated samples. In this contribution some of the synergies that can be developed between atomistic simulations and experiments for this research field are briefly discussed by means of some typical examples.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. R. Weertman, Mechanical behaviour of nanocrystalline metals. In: Nanostructured materials: processing, properties, and potential applications. Norwich (NY): William Andrew Publishing; 2002, Chapter 10 (2002).

    Google Scholar 

  2. 2.

    K. S. Kumar, H. Van Swygenhoven and S. Suresh., Acta Mater. 51, 5743 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    F. Dalla Torre, H. Van Swygenhoven and M. Victoria, Acta Mater. 50, 3957 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    F. Dalla Torre, Ph.D. Thesis entitled “Microstructure and Mechanical Properties of Nanocrystalline Ni produced by Three Different Synthesis Techniques”, EPFL, Switzerland, 2003.

  5. 5.

    Y. M. Wang and E. Ma, Acta Mater. 52, 1699 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    H. Van Swygenhoven, P. M. Derlet, Z. Budrovic and A. Hasnaoui, Z. Metallkd. 10, 1106 (2003).

    Article  Google Scholar 

  7. 7.

    P. M. Derlet, A. Hasnaoui and H. Van Swygenhoven, Scripta Mater. 49, 629 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    V. Yamakov, D. Wolf, S. R. Phillpot and H. Gleiter, Acta. Mater. 40, 61 (2002).

    Article  Google Scholar 

  9. 9.

    H. Van Swygenhoven, D. Farkas and A. Caro, Phys. Rev. B 62, 831 (2000).

    Article  Google Scholar 

  10. 10.

    P. M. Derlet and H. Van Swygenhoven, Phys. Rev. B 67, 014202 (2003).

    Article  Google Scholar 

  11. 11.

    V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter, Phil. Mag. Lett. 83, 385 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    J. Schiøtz and K. W. Jacobsen, Science 301, 1357 (2003).

    Article  Google Scholar 

  13. 13.

    D. J. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987).

    CAS  Article  Google Scholar 

  14. 14.

    B. E. Warren, X-ray Diffraction, (Addison-Wesley, Massachusetts, 1969), Chapter 1.

    Google Scholar 

  15. 15.

    P. M. Derlet, Z. Budrovic and H. Van Swygenhoven, in preparation.

  16. 16.

    Z. Budrovic, H. Van Swygenhoven, P. M. Derlet, S. Van Petegem and B. Schmidt, Science 304, 273 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    P. M. Derlet, R. Meyer, L. J. Lewis, U. Stuhr, and H. Van Swygenhoven, Phys. Rev. Lett. 87, 205501 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    P. M. Derlet and H. Van Swygenhoven, Phys. Rev. Lett. 92, 035505 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    P. M. Derlet, S. Van Petegem and H. Van Swygenhoven, in preparation.

  20. 20.

    S. Van Petegem, F. Dalla Torre, D. Segers and H. Van Swygenhoven, Scripta Mater. 48, 17 (2003).

    Article  Google Scholar 

  21. 21.

    Van Petegem S, Positron annihilation study of nanocrystallinematerials, Doctoral Thesis, University of Ghent, 2003.

  22. 22.

    H. Van Swygenhoven and P. M. Derlet, Phys. Rev. B 64, 224105 (2001).

    Article  Google Scholar 

  23. 23.

    A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet, Phys. Rev. B 66, 184112 (2002).

    Article  Google Scholar 

  24. 24.

    A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet, Science 300, 1550 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    M. J. Caturla, H. Van Swygenhoven and P. M. Derlet, unpublished

  26. 26.

    H. Van Swygenhoven, P. M. Derlet and A. Hasnaoui, Phys. Rev. B 66, 024101 (2002).

    Article  Google Scholar 

  27. 27.

    P. M. Derlet, H. Van Swygenhoven and A. Hasnaoui, Phil. Mag. 83, 3569 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    A. G. Frøseth, H. Van Swygenhoven and P. M. Derlet, Acta Mater. 52, 2259 (2004).

    Article  Google Scholar 

  29. 29.

    V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter, Nature Mater. 3, 43 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    H. Van Swygenhoven, P. M. Derlet and A. Frøseth, Nature Mater. in press, (2004).

  31. 31.

    A. G. Frøseth, P. M. Derlet and H. Van Swygenhoven, submitted (2004).

  32. 32.

    R. C. Hugo, H. Kung, J. R. Weertman, R. Mitra, J. A. Knapp and D. M. Follstaedt, Acta Mater., 51, 1937 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, P. Wang, Acta Mater. 51, 387 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    P. M. Derlet and H. Van Swygenhoven, Phil. Mag. A. 82, 1 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Van Swygenhoven.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Swygenhoven, H., Derlet, P.M., Frøseth, A.G. et al. Nanocrystalline fcc metals: bridging experiments with simulations. MRS Online Proceedings Library 821, 152–161 (2004). https://doi.org/10.1557/PROC-821-P4.2/N4.2

Download citation