Synthesis and Study of Nanostructures Via Microwave Heating

Abstract

This work is devoted to microwave heating of graphite, sucrose, calcined sucrose, and a mixture of graphite with sucrose to produce carbon nanotubes (CNT's). The samples were submitted to microwave radiation (power 800W, frequency 2.45 GHz) in air and high vacuum (10−5 Torr) for 30 - 60 min. The oven temperature was approximately 1200°C. After vaporization the condensed material was collected on various fused silica targets (different morphologies were used). The samples were found to contain a significant proportion of nanotubes, nanoparticles and fibers (1-2.8 micrometers), which appeared to be highly graphitized and helical structured. After deposition, the morphology of carbon nanotubes was studied with SEM, TEM and AFM techniques. It was observed that multi-walled nanotubes (MWNT's) were produced by this method. The morphology of fused silicon based substrates (SiO2, SiC) was studied as an important factor for the growth of carbon nanotubes. Many aspects as the size and shape of the obtained nanotubes on different substrates (porous and non-porous fused silicon substrates) were achieved, as well as the concentration of them across the substrate and other properties.

References

  1. 1.

    W.B. Choi, Y.W. Jin, H.Y. Kim, S.J. Lee, M.J. Yun, J.H. Kang, Y.S. Choi, N.S. Park, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 78 (2001)1547

    CAS  Article  Google Scholar 

  2. 2.

    C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Science 286 (1999) 1127.

    CAS  Article  Google Scholar 

  3. 3.

    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287(2000) 622.

    CAS  Article  Google Scholar 

  4. 4.

    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vázquez, R. Beyers, Nature 363 (1993) 605.

    CAS  Article  Google Scholar 

  5. 5.

    A. Thess, R. Lee, P. Nicolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, R. E. Smalley, Science 273 (1996) 483.

    CAS  Article  Google Scholar 

  6. 6.

    M. Terrones, N. Grobert, J. P. Zhang, H. Terrones, J. Olivares, W. K. Hsu, J. P. Hare, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 285 (1998) 299.

    CAS  Article  Google Scholar 

  7. 7.

    M. Nath, B. C. Satishkumar, A. Govindaraj, C. P. Vinod, C. N. R. Rao, Chem. Phys. Lett. 322 (2000) 33.

    Article  Google Scholar 

  8. 8.

    Jin Lee, Cheol and Park, Jeunghee, School of Electrical Engineering, Kunsan National University, Kunsan, (2000) 573–701.

    Google Scholar 

  9. 9.

    Byszewsri, P. and Klusek, Z., Optoelectronics Review, 9 (2001) 203–210.

    Google Scholar 

  10. 10.

    X. Ma, E. G. Wang, Appl. Phys. Lett. 78 (2001) 978

    CAS  Article  Google Scholar 

  11. 11.

    S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chaiiang, X. W. Liu, H. C. Shih, Appl. Phys. Lett. 78 (1999) 197

    Article  Google Scholar 

  12. 12.

    E. G. Rakov, Russ. Chem. Rev. 70(10) (2001) 827–863

    CAS  Article  Google Scholar 

  13. 13.

    Kharissova, O. V., Ortiz, U., Hinojosa, M., Mat. Res. Soc., 654 (2001) AA. 3. 14. 1–6.

    Google Scholar 

  14. 14.

    Teooreanu I. F., Revue Roum. Chim., 40(10) (1995) 965.

    Google Scholar 

  15. 15.

    Tesuya Ikeda, Toshiihiro Kamo, Minoru Danno, Appl. Phys. Lett, 67(7) (1995) 900.

    Article  Google Scholar 

  16. 16.

    Su-yuan Xie, Rong-bin Huang, La-jia Yu, Jie Ding, and Lan-sun Zheng, Applied Physics Letters, 75(18) (1999) 2764–2766.

    Article  Google Scholar 

  17. 17.

    Kawasaki, S.; Komiyama, S.; Ohmori, S.; Yao, A.; Okino, F.; Touhara, H. Preparation of Carbon Nanotubes by Using Mesoporous Silica. Mat. Res. Soc. Symp. Proc. 2001, 675.

    Google Scholar 

  18. 18.

    Kharissova O. V., Nieto, I., Ortiz U., Aguilar J. A., Hinojosa M. Mat. Res. Soc., 740, (2003) I7. 25. 1–6

    Google Scholar 

  19. 19.

    Kharissova, O. V.; Nieto, I.; Ortíz, U.; Aguilar, J. A.; Hinojosa, M. Condensation of Carbon Vapor in the Microwave Oven. MRS Proceedings 2002, 740. Materials Research Society, 2002 Fall Meeting, Boston, MA.

    Google Scholar 

  20. 20.

    Soloviev, S.; Das, T.; Sudarshan, T. S. Structural and Electrical Characterization of Porous Silicon Carbide Formed in n-6H-SiC Substrates. Electrochemical and Solid-State Letters 2003, 6(2), 1–3

    Google Scholar 

  21. 21.

    W. D. Zhang, J. T. L. Thong, W. C. Tjiu, L. M. Gan, Diamond and Related Materials, 11(2002) 1638–1642.

    CAS  Article  Google Scholar 

  22. 22.

    R. Avetik, Pradhan Bhabendra K, Chang Jiping, Chen Gugang, Eklunnd Peter C, J. Phys. Chem. B, 106(34) (2002) 8671–8675

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the CONACyT-Mexico (grant No. I39207U), to the Universidad Autónoma de Nuevo León (Monterrey, Mexico, grant No.CA804-02) and to the Facultad de Ciencias Físico Matemáticas for financial support, as well as M.S. Claudia López González (FIME, UANL) for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oxana V. Kharissova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kharissova, O.V., Zavala, E., Ortíz, U. et al. Synthesis and Study of Nanostructures Via Microwave Heating. MRS Online Proceedings Library 821, 117–122 (2004). https://doi.org/10.1557/PROC-821-P3.19

Download citation