Abstract
Two types of glass plates coated with uniformly aligned polyurethane films were produced by repeating the cycles of the alternative exposures of the glass plates to 1,4-phenylene diisocyanate (PDI) and 2-butyne-1,4-diol (BDO) and to PDI and terephthalic acid bis-(2-hydroxy ethyl) ester (TBE) for 500 times at elevated temperatures. The glass plates coated with uniformly aligned poly-(PDI-BDO)500 (500 represents the number of the cycle) produced monolayers of closely packed 2D arrays of silicalite-1 crystals with the average size of 370 × 200 × 500 nm on the glass plates upon immersion of the glass plates into a dense gel consisting of tetraethylorthosilicate (TEOS), tetrapropylammonium hydroxide (TPA+OH−), and water (mole ratio = 7:1.5:330) followed by the hydrothermal reaction at 180 °C for 2 h. The silicalite-1 crystals were aligned with the c-axes perpendicular to the substrate plane. Upon switching the polymer from poly-(PDI-BDO)500 to poly-(PDI-TBE)500 the orientations of the silicalite-1 crystals in the 2D arrays changed from c to a axes perpendicular to the substrate. This report therefore demonstrates that the uniformly aligned polyurethane films serve as the templates for the growth of closely packed multi-crystal arrays of silicalite-1 in uniform orientations and the nature of the polyurethane film affects the resulting orientations of the crystals. We propose that the supramolecularly organized organic-inorganic composites consisting of the hydrolyzed organic products and the seed crystals responsible for the above phenomena.
This is a preview of subscription content, access via your institution.
References
- 1.
G. A. Ozin, A. Kuperman, A. Stein, Angew. Chem. Int. Ed. Engl. Adv. Mater. 28, 359 (1989).
- 2.
G. A. Ozin, A. Stein, G. D. Stucky, J. P. Godber, J. Inclusion Phenom. 6, 379 (1990).
- 3.
M. Borja, P. K. Dutta, Nature 362, 43 (1993).
- 4.
M. Sykora, J. R. Kincaid, Nature 387, 162 (1997).
- 5.
Y. I. Kim, S. W. Keller, J. S. Krueger, E. H. Yonemoto, G. B. Saupe, T. E. Mallouk, J. Phys. Chem. B 101, 2491 (1997).
- 6.
D. R. Rolison, C. A. Bessel, Acc. Chem. Res. 33, 737 (2000).
- 7.
N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. E. Cox, K. Moller, T. Bein, J. Am. Chem. Soc. 111, 530 (1989).
- 8.
T. Bein, P. Enzel, Angew. Chem. Int. Ed. Engl. 12, 1737 (1989).
- 9.
G. Grubert, M. Stockenhuber, O. P. Tkachenko, M. Wark, Chem. Mater. 14, 2458 (2002).
- 10.
G. Calzaferri, M. Pauchard, H. Maas, S. Huber, A. Khatyr, T. Schaafsma, J. Mater. Chem. 12, 1 (2002).
- 11.
S. D. Cox, T. E. Gier, G. D. Stucky, J. Bierlein, J. Am. Chem. Soc. 110, 2986 (1988).
- 12.
H. S. Kim, S. M. Lee, K. Ha, C. S. Jung, Y.-J. Lee, Y. S, Chun, D. S, Kim, B. K. Rhee, K. B. Yoon, J. Am. Chem. Soc. 126, 673 (2004).
- 13.
U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, M. Abraham, Phys. Rev. Lett. 81, 4628 (1998).
- 14.
Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Science 300, 456 (2003).
- 15.
M. E. Davis, Nature 417, 813 (2002).
- 16.
A. Kulak, Y.-J. Lee, Y. S. Park, K. B. Yoon, Angew. Chem. Int. Ed. 39, 950 (2000).
- 17.
S. Y. Choi, Y.-J. Lee, Y. S. Park, K. Ha, K. B. Yoon, J. Am. Chem. Soc. 122, 5201 (2000).
- 18.
G. S. Lee, Y.-J. Lee, K. Ha, K. B. Yoon, Tetrahedron 56, 6965 (2000).
- 19.
G. S. Lee, Y.-J. Lee, K. B. Yoon, J. Am. Chem. Soc. 123, 9769 (2001).
- 20.
Y. S. Chun, K. Ha, Y.-J. Lee, J. S. Lee, H. S. Kim, Y. S. Park, K. B. Yoon, Chem. Comm. 17, 1846 (2002).
- 21.
K. Ha, Y.-J. Lee, H. J. Lee, K. B. Yoon, Adv. Mater. 12, 1114 (2000).
- 22.
K. Ha, Y.-J. Lee, D.-Y. Jung, J. H. Lee, K.B. Yoon, Adv. Mater. 12, 1614 (2000).
- 23.
K. Ha, Y.-J. Lee, Y. S. Chun, Y. S. Park, G. S. Lee, K. B. Yoon, Adv. Mater. 13, 594 (2001).
- 24.
J. S. Park, G. S. Lee, Y.-J. Lee, Y. S. Park, K. B. Yoon, J. Am. Chem. Soc. 124, 13366 (2002).
- 25.
J. S. Park, Y.-J. Lee, K. B. Yoon, J. Am. Chem. Soc. 126, 1934 (2004).
- 26.
A. Kulak, Y. S. Park, Y.-J. Lee, Y. S. Chun, K. Ha, and K. B. Yoon, J. Am. Chem. Soc. 122, 9308 (2000).
- 27.
G. S. Lee, Y.-J. Lee, K. Ha, K. B. Yoon, Adv. Mater. 13, 1491 (2001).
- 28.
S. Mann, Nature 365, 499 (1993).
- 29.
E. Dujardin, S. Mann, Adv. Eng. Mater. 4, 461 (2002).
- 30.
L. Addadi, S. Weiner, Angew. Chem. Int. Ed. Engl. 31, 153 (1992).
- 31.
S. Weiner, L. Addadi, J. Mater. Chem 7, 689 (1997).
- 32.
Y.-J. Lee, J. S. Lee, Y. S. Park, K. B. Yoon, Adv. Mater. 13, 1259 (2001).
- 33.
J. S. Lee, Y.-J. Lee, E. L. Tae, Y. S. Park, K. B. Yoon, Science 301, 818 (2003).
- 34.
M. Yamaguchi, T. Takata, T. Endo, J. Org. Chem. 55, 1490 (1990).
- 35.
D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to Spectroscopy (Saunders College Publishing, Orlando, 1996).
- 36.
M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites (Elsevier, Amsterdam, 2001).
- 37
C. E. A. Kirschhock, R. Ravishankar, P. A. Jacobs, J. A. Martens, J. Phys. Chem. 103, 11021 (1999).
- 38.
C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs, J. A. Martens, J. Phys. Chem. 106, 4897 (2002).
- 39.
J. H. Koegler, H. van Bekkum, J. C. Jansen, Zeolites 19, 262 (1997).
- 40.
J. Caro et al., Adv. Mater. 4, 273 (1992).
- 41.
S. Feng, T. Bein, Nature 368, 834 (1994).
- 42.
S. Feng, T. Bein, Science 265, 1839 (1994).
- 43.
G. Calzaferri et al., J. Mater. Chem. 12, 1 (2002).
- 44.
U. Vietze et al., Phys. Rev. Lett. 81, 4628 (1998).
Acknowledgments
We thank the Ministry of Science and Technology of the Korean Government for supporting this work through the Creative Research Initiatives programs.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, J.S., Lee, YJ., Tae, E.L. et al. Synthesis of Zeolite as Ordered Multi-Crystal Arrays using Uniformly Aligned Polyurethane as Templates. MRS Online Proceedings Library 821, 105–116 (2004). https://doi.org/10.1557/PROC-821-P3.17
Published:
Issue Date: