Modeling the Elastic Fields in Epitaxially Grown Multilayers

Abstract

A model was developed to calculate the elastic fields, including strain energy density, in multilayers grown epitaxially on a planar substrate. This model works well for compliant and non-compliant substrates. In particular we illustrate the model for four layer heterostructure and apply it for graded Ge (SixGe1−x) grown on a planar silicon substrate. Using the equations for static equilibrium and Hooke's law for isotropic materials under a plane stress condition, the elastic fields associated with each layer were calculated. The strain partitioning in this model reduces to the limiting case of a two-layer structure available in the literature. As it turns out here, strain partitioning is a function of the bulk unstrained lattice parameters, elastic constants and thicknesses of the layers. The model was qualitatively verified by comparing the strain energy density with the dislocation density away from a relatively thick substrate. This model helps shed some light on the factors important in achieving defect free multilayers for optoelectronic devices.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. B. Samavedam, E. A. Fitzgerald, Journal of Applied Physics 81, 3108 (1997)

    CAS  Article  Google Scholar 

  2. 2.

    E. A. Fitzgerald, Y. H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel and B. E. Weir, J. Vac. Sci. Technol. B 10, 1807 (1992)

    CAS  Article  Google Scholar 

  3. 3.

    F. Schaffler, D. Tobben, H. R. Herzog, G. Abstreiter, and B. Hollander, Semicond. Sci. Technol. 7, 260 (1992)

    Article  Google Scholar 

  4. 4.

    S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, IEEE Trans. Electron Devices 36, 2043 (1989)

    CAS  Article  Google Scholar 

  5. 5.

    R. People, IEEE J. Quantum Electron QE-22, 1696 (1986).

    CAS  Article  Google Scholar 

  6. 6.

    D. Zubia, S. D. Hersee, T. A. Khraishi, Appl. Phys. Lett. 80, 740 (2002)

    CAS  Article  Google Scholar 

  7. 7.

    Y. H. Lo, Appl. Phys. Lett 59, 2311 (1991)

    CAS  Article  Google Scholar 

  8. 8.

    D. Teng and Y. H. Lo, Appl. Phys. Lett. 62, 43 (1993)

    CAS  Article  Google Scholar 

  9. 9.

    L. B. Freund and W. D. Nix, Appl. Phys. Lett. 69, 173 (1996)

    CAS  Article  Google Scholar 

  10. 10.

    J. P. Hirth and A.G. Evans, J. Appl. Phys. 60, 2372 (1986)

    CAS  Article  Google Scholar 

  11. 11.

    P. Wakeland, T. A. Khraishi, D. Zubia, Journal of Electronic Materials 32, 836 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ceramic and Composite Materials Center, through NSF grant EEC 99-08205 and the members of the industrial advisory board is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ganesh Vanamu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vanamu, G., Khraishi, T.A., Datye, A.K. et al. Modeling the Elastic Fields in Epitaxially Grown Multilayers. MRS Online Proceedings Library 821, 54–59 (2004). https://doi.org/10.1557/PROC-821-P2.10

Download citation