Fabrication of Ordered Sub-Micron Topographies on Large-Area Poly(Urethane Urea) by Two-Stage Replication Molding


It has been established that material surface topography can have a significant effect on biological cell adhesion, in the absence of changes in surface chemistry. Such investigations were typically performed using surface features with size on the order of microns, comparable to the dimensions of the cells. It has been demonstrated that sub-micron sized topographies that cannot be created via contact lithography also influence cell behavior. The ability to affect cell adhesion is a prime consideration in the development of novel biomaterials. This study reports a two-stage replication molding process for fabricating ordered sub-micron sized features over a large area of biomedical polyether(urethane urea). Such a technique has great applicability in the area of long-term implantable materials as a method for influencing cell-material interactions.

This is a preview of subscription content, access via your institution.


  1. 1

    R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, Biomaterials 20 (6), 573 (1999).

    CAS  Article  Google Scholar 

  2. 2

    E. T. den Braber, J. E. de Ruijter, H. T. J. Smits, L. A. Ginsel, A. F. von Recum, and J. A. Jansen, Biomaterials 17 (11), 1093 (1996).

    Article  Google Scholar 

  3. 3

    X. F. Walboomers, W. Monaghan, A. S. G. Curtis, and J. A. Jansen, J. Biomed. Mater. Res. 46 (2), 212 (1999).

    CAS  Article  Google Scholar 

  4. 4

    B. Wojciak-Stothard, Z. Madeja, W. Korohoda, A. Curtis, and C. Wilkinson, Cell Biol. Int. 19 (6), 485 (1995).

    CAS  Article  Google Scholar 

  5. 5

    A. M. P. Turner, N. Dowell, S. W. P. Turner, L. Kam, M. Isaacson, J. N. Turner, H. G. Craighead, and W. Shain, J. Biomed. Mater. Res. 51 (3), 430 (2000).

    CAS  Article  Google Scholar 

  6. 6

    P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, J. Cell Sci. 99, 73 (1991).

    Google Scholar 

  7. 7

    S. Turner, L. Kam, M. Isaacson, H. G. Craighead, W. Shain, and J. Turner, J. Vac. Sci. Technol. B 15 (6), 2848 (1997).

    Article  Google Scholar 

  8. 8

    A. Thapa, D. C. Miller, T. J. Webster, and K. M. Haberstroh, Biomaterials 24 (17), 2915 (2003).

    CAS  Article  Google Scholar 

  9. 9

    M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, 8 (6), 1099 (2002).

  10. 10

    A. S. G. Curtis, B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson, Biophys. Chem. 94 (3), 275 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Y. N. Xia, J. J. McClelland, R. Gupta, D. Qin, X. M. Zhao, L. L. Sohn, R. J. Celotta, and G. M. Whitesides, Adv. Mater. 9 (2), 147 (1997).

    CAS  Article  Google Scholar 

  12. 12

    X. F. Walboomers, H. J. E. Croes, L. A. Ginsel, and J. A. Jansen, J. Biomed. Mater. Res. 47 (2), 204 (1999).

    CAS  Article  Google Scholar 

  13. 13

    E. Eisenbarth, J. Meyle, W. Nachtigall, and J. Breme, Biomaterials 17 (14), 1399 (1996).

    CAS  Article  Google Scholar 

  14. 14

    R. J. Zdrahala and I. J. Zdrahala, J. Biomater. Appl. 14 (1), 67 (1999).

    CAS  Article  Google Scholar 

  15. 15

    J. H. Lee, Y. M. Ju, W. K. Lee, K. D. Park, and Y. H. Kim, J. Biomed. Mater. Res. 40 (2), 314 (1998).

    CAS  Article  Google Scholar 

  16. 16

    J. H. Park, K. D. Park, and Y. H. Bae, Biomaterials 20 (10), 943 (1999).

    Article  Google Scholar 

  17. 17

    G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).

    CAS  Article  Google Scholar 

  18. 18

    T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18 (13), 5314 (2002).

    CAS  Article  Google Scholar 

  19. 19

    H. Schmid and B. Michel, Macromolecules 33 (8), 3042 (2000).

    CAS  Article  Google Scholar 

Download references


This research was supported by a Commonwealth of Pennsylvania Tobacco Settlement Grant and the Dorothy Foehr Huck and J. Lloyd Huck Institutes of the Life Sciences. The Authors would like to acknowledge the assistance of Prof. Gerald Hess (Messiah College, PA) and Mr. T Rusnack (Pennsylvania State University Materials Characterization Laboratory) and the Pennsylvania State University Nanofabrication Facility for assistance in the preparation and characterization of samples.

Author information



Corresponding author

Correspondence to Keith R. Milner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milner, K.R., Balmer, M., Donahue, H.J. et al. Fabrication of Ordered Sub-Micron Topographies on Large-Area Poly(Urethane Urea) by Two-Stage Replication Molding. MRS Online Proceedings Library 820, 288–293 (2004). https://doi.org/10.1557/PROC-820-R2.8

Download citation