Polariton-enhanced near field lithography and imaging with infrared light


A novel approach to making a material with negative index of refraction in the infrared frequency band is described. Materials with negative dielectric permittivity ε are utilized in this approach. Those could be either plasmonic (metals) or polaritonic (semiconductors) in nature. A sub-wavelength plasmonic crystal (SPC), with the period much smaller than the wavelength of light, consisting of nearly-touching metallic cylinders is shown to support waves with negative group velocity. The usage of such waves for sub-wavelength resolution imaging is demonstrated in a numerical double-slit experiment. Another application of the negative-epsilon materials is laser-driven near field nanolithography. Any plasmonic or polaritonic material with nega- tive ε =–εd sandwiched between dielectric layers with εd > 0 can be used to significantly decrease the feature size. It is shown that a thin slab of SiC is capable of focusing the mid- IR radiation of a CO2 laser to several hundred nanometers, thus paving the way for a new nano-lithographic technique: Phonon Enhanced Near Field Lithography in Infrared (PENFIL). Although an essentially near-field effect, this resolution enhancement can be quantified using far-field measurements. Numerical simulations supporting such experiments are presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, Sixth Edition, 1980.

    Google Scholar 

  2. 2.

    S. M. Mansfield and G. S. Kino Appl. Phys. Lett. 57, p. 2615, 1990.

    CAS  Article  Google Scholar 

  3. 3.

    J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85–88, pp. 3966–3969, 2000.

    Article  Google Scholar 

  4. 4.

    D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz Phys. Rev. Lett. 84, p. 4184, 2000.

    CAS  Article  Google Scholar 

  5. 5.

    J. T. Shen and P. M. Platzman, “Near field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, p. 3826, 2002.

    Article  Google Scholar 

  6. 6.

    N. Fang, Z. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Exp. 11, p. 682, 2003.

    CAS  Article  Google Scholar 

  7. 7.

    G. Shvets, “Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography,” in Proceedings of SPIE, Plasmonics: Metallic Nanostructures and Their Optical Properties, 5221, p. 124, 2003.

    CAS  Article  Google Scholar 

  8. 8.

    J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas Appl. Phys. Lett. 82, p. 257, 2003.

    CAS  Article  Google Scholar 

  9. 9.

    D. J. Bergman and D. Stroud Solid State Physics 46, p. 147, 1992.

    CAS  Article  Google Scholar 

  10. 10.

    M. I. Stockman, S. V. Faleev, and D. J. Bergman Phys. Rev. Lett. 87, p. 167401, 2001.

    CAS  Article  Google Scholar 

  11. 11.

    S. O’Brien and J. B. Pendry Journ. Phys. Cond. Matt. 14, p. 4035, 2002.

    Article  Google Scholar 

  12. 12.

    G. Y. Lyubarskii, Application of Group Theory in Physics, Pergamon Press, New York, 1960.

    Google Scholar 

  13. 13.

    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, p. 2075, 1999.

    Article  Google Scholar 

  14. 14.

    J. B. Pendry Phys. Rev. Lett. 85, p. 3966, 2000.

    CAS  Article  Google Scholar 

  15. 15.

    P. B. Johnson and R. W. Christy Phys. Rev. B 6, p. 4370, 1972.

    CAS  Article  Google Scholar 

  16. 16.

    S. Matthias, J. S. K. Nielsch, F. Muller, R. B. Wehrspohn, and U. Gosele Adv. Materials 14, p. 1618, 2002.

    CAS  Article  Google Scholar 

  17. 17.

    N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, p. 161, 2003.

    CAS  Article  Google Scholar 

  18. 18.

    E. D. Palik, Handbook of optical constants of solids, Academic Press, Orlando, 1985.

    Google Scholar 

  19. 19.

    R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, p. 1290, 2004.

    CAS  Article  Google Scholar 

Download references


Useful input from German Geraskin is gratefully acknowledged. This work was supported by NSF, DOE, and the Presidential Early Career Award for Scientists and Engineers (PECASE).

Author information



Corresponding author

Correspondence to Gennady Shvets.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shvets, G., Urzhumov, Y.A. Polariton-enhanced near field lithography and imaging with infrared light. MRS Online Proceedings Library 820, 243–254 (2004). https://doi.org/10.1557/PROC-820-R1.2

Download citation