Spherical Aberration Corrected Z-STEM Characterization of CdSe and CdSe/ZnS Nanocrystals


Spherical aberration corrected Atomic Number Contrast Scanning Electron Microscopy (Z-STEM) has recently demonstrated an amazing ability to not only obtain sub-angstrom levels of detail but also yield chemical information at that level as well. With an optimal probe size of 0.8 Å, extremely detailed images of CdSe nanocrystals were obtained showing the lattice structure and surface morphology. As an example of the usefulness of this technique, a sample of CdSe nanocrystals prepared using trioctylphosphine oxide (TOPO) as the surfactant was compared to a sample of CdSe prepared using a mixture of TOPO and hexadecylamine (HDA) as the surfactant. The TOPO/HDA nanocrystals exhibit a narrower size distribution and several orders of magnitude greater fluorescence compared to that of the TOPO only nanocrystals. Interestingly, the Z-STEM images show a striking difference in nanocrystal morphology as the result of the addition of HDA to the reaction mixture. This result suggests surface morphology can be tuned through judicious choice of surfactant. A second example of Z-STEM imaging involves the characterization of CdSe/ZnS core/shell nanocrystals. The mass contrast afforded by Z-STEM can easily distinguish between core and shell.

This is a preview of subscription content, access via your institution.


  1. 1.

    Swofford L. A.; Rosenthal S.J. Molecular and Nanomaterial-Based Photovoltaics, in Molecular Nanoelectronics, E M A T Reed, Editor. 2003, American Scientific Publishers.

    Google Scholar 

  2. 2.

    N.C. Greenham; X Peng; Alivisatos A. P. Phys. Rev. B, 1996. 54,: p. 17628.

    Article  Google Scholar 

  3. 3.

    Erwin M. M.; Kadavanich A. V.; McBride J.; Kippeny T.; Pennycook S.; Rosenthal S. J.; Eur. J. Phys. D, 2001. 16: p. 275–277.

    CAS  Article  Google Scholar 

  4. 4.

    Henglein A., Pure Appl. Chem., 1984. 56: p. 1215.

    CAS  Article  Google Scholar 

  5. 5.

    Henglein A., Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1997. 101: p. 1562.

    CAS  Article  Google Scholar 

  6. 6.

    Nanda J.; Sapra S.; Sarma D.; Chandrasekharan N.; Hodes G.; Chem. of Mater., 2000. 12: p. 1018.

    CAS  Article  Google Scholar 

  7. 7.

    Kho R.; L Nguyen; Torres C. L.-Martinez; Mehra R. K.; Biophys. Res. Commun., 2000. 272: p. 29.

    CAS  Article  Google Scholar 

  8. 8.

    Dubertret B.; Skourides P.; Norris D. J.; Noireaux V.; Brivanlou A. H.; Libchaber A. Science, 2002. 298: p. 1759.

    CAS  Article  Google Scholar 

  9. 9.

    Gerion D.; Parak W. J.; Williams S. C.; Zanchet D.; Micheel C. M.; Alivisatos A.P. J. Am. Chem. Soc., 2002. 124: p. 7070.

    CAS  Article  Google Scholar 

  10. 10.

    Tomlinson I. D.; Mc J.Bride; Blakely R. D.; Rosenthal S. J.; Biotechnology, in press.

  11. 11.

    Rosenthal S. J.; Tomlinson I. D.; Adkins E. M.; Schroeter S.; Adams S.; Swafford L. A.; Mc J.Bride; Wang Y.; De Felice L. J.; Blakely R. D.; J. Am. Chem. Soc., 2002(124): p. 4586.

    CAS  Article  Google Scholar 

  12. 12.

    Wu X.; Liu H.; Lui J.; Haley K. N.; Treadway J.A.; Larson P. J.; Ge N.; Peale F.; Bruchez M. P.; Nature Biotechnology, 2003. 21: p. 41.

    CAS  Article  Google Scholar 

  13. 13.

    Klein D. L.; Roth R.; Lim A. K.; Alivisatos A. P.; McEuen P. L. Nature, 1997. 389: p. 669.

    Article  Google Scholar 

  14. 14.

    Gao M. Y.; Lesser C.; Kirstein S.; Mohwald H.; Rogach A. L.; Weller H. J. Appl. Phys., 2000. 87: p. 2297.

    CAS  Article  Google Scholar 

  15. 15.

    Konenkamp R.; Hoyer P.; Wahi A. J. Appl. Phys., 1996. 79: p. 7029.

    Article  Google Scholar 

  16. 16.

    Vlasov Y. A.; Yao N.; Norris D. J. Adv. Mater., 1999. 11: p. 165.

    CAS  Article  Google Scholar 

  17. 17.

    Wange X., Qu L.; Zhang J.; Peng X.; Xiao M. Nano Letters, 2003. 3 (8): p. 1103.

    Article  Google Scholar 

  18. 18.

    Myung N.; Bae Y.; Bard A.J. Nano Lett., 2003. 3 (6): p. 747.

    CAS  Article  Google Scholar 

  19. 19.

    Manna L.; Scher E. C.; Li L.; Alivisatos A. P. J. Am. Chem. Soc., 2002. 124 (24): p. 7136.

    CAS  Article  Google Scholar 

  20. 20.

    Donega C. M.; Hickley S.G.; Wuister S. F.; Vanmaekelbergh D.; Meijerink A. J. Phys. Chem. B, 2003. 107: p. 489.

    Article  Google Scholar 

  21. 21.

    Landes C.; Burda C.; Braun M.; El-Sayed M. A. J. Phys. Chem. B, 2001. 105: p. 2981.

    CAS  Article  Google Scholar 

  22. 22.

    A.K.A.M. Kadavanich, Tolbert S. H.; Peng X.; Schlamp M. C.; Lee J. C.; Alivisatos A. P.; Adv. Microcryst. Nanocryst. Semicond. 1996, Symp. 1996.

  23. 23.

    Shiang J.; Kadavanich A.V.; Grubbs R. K.; Alivisatos A. P.; J. Phys. Chem., 1995. 99: p. 17417.

    CAS  Article  Google Scholar 

  24. 24.

    Peng X. G.; Wickham J.; Alivisatos A. P. J. Am. Chem. Soc., 1998. 120: p. 5343.

    CAS  Article  Google Scholar 

  25. 25.

    Talapin D. V.; Rogach A. L.; Kronowski A.; Haase M.; Weller H. Nano Lett., 2001. 1 (4): p. 207.

    CAS  Article  Google Scholar 

  26. 26.

    Peng Z. A.; Peng X. P. J. Am. Chem. Soc., 2001. 123: p. 1389.

    CAS  Article  Google Scholar 

  27. 27.

    Reis P.; Bleuse J.; Pron A.; Nano Lett., 2002. 2: p. 781.

    Article  Google Scholar 

  28. 28.

    Reis P.; Caryon S.; Bleuse J., Pron A.; Synth. Met., 2003. 139: p. 649.

    Article  Google Scholar 

  29. 29.

    Hines M.; P. G., J. Phys. Chem., 1996. 100.

  30. 30.

    Dabbousi B.; Rodriguez J.-Viejo; Mikulec F.; Heine J.; Matoussi H.; Ober R.; Jensen K.; Bawendi M.; J. Phys. Chem. B., 1997. 101: p. 9463.

    CAS  Article  Google Scholar 

  31. 31.

    Mattoussi H.; Mauro J. M.; Goldman E. R.; Anderson G. P.; Sundar V.C.; Mikulec F. V.; Bawendi M. G. J. Am. Chem. Soc., 2000. 122 (49): p. 12142.

    CAS  Article  Google Scholar 

  32. 32.

    Taylor J.; Kippeny T.; Rosenthal S. J. J. Clust. Sci., 2001. 12 (4): p. 571.

    CAS  Article  Google Scholar 

Download references


We would like to thank Joe Treadway and Quantum Dot Corp. for providing the core/shell nanocrystals and their insight. We would also like to thank Andrew Lupini and the Pennycook research group for assistance with operation of the STEMs. Funding for this research was provided by a Vanderbilt Institute of Nano-Science and Engineering fellowship and by the Department of Energy, grant number (DE-FG0202-ER45957).

Author information



Corresponding author

Correspondence to James McBride.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McBride, J., Kippeny, T.C., Pennycook, S.J. et al. Spherical Aberration Corrected Z-STEM Characterization of CdSe and CdSe/ZnS Nanocrystals. MRS Online Proceedings Library 818, 342–346 (2004). https://doi.org/10.1557/PROC-818-M8.15.1

Download citation