Synthesis of Superparamagnetic Magnesium Ferrite Nanoparticles by Microwave-Hydrothermal Method


Superparamagnetic magnesium ferrite, MgFe2O4, nanoparticles were synthesized under mild microwave hydrothermal (MH) conditions. Transmission electron microscopic studies showed that the average particle size of the ferrite obtained is ~3 nm, with a narrow size distribution. Temperature dependent AC magnetic susceptibility measurements at 2 Oe showed characteristic feature of superparamagnetism with blocking temperature, Tb, at 47 K. Tb decreases with increasing DC magnetic field as evidenced by zero-field–cooled susceptibility studies at 50 and 500 Oe (Tb = 38 and 27 K respectively). As a typical superparamagnetic behavior, the zero-field-cooled and the field-cooled magnetizations diverge below Tb. Magnetic hysteresis behavior is observed below Tb, with a high coercivity of 185 Oe at 12 K, and magnetic hysteresis behavior disappears when measured above Tb. The results indicate that MH method is highly suitable for the synthesis of superparamagnetic ferrite nanoparticles of uniform size distribution.

This is a preview of subscription content, access via your institution.


  1. 1.

    Z. L. Wang, Y. Liu, and Z. Zhang, Handbook of Nanophase and Nanostructured Materials, Vol. 3 (Kluwer Academic/Plenum Publishers, New York, 2003).

  2. 2.

    M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, and S. A. Rossini, J. Chem. Soc., Faraday Trans. 92, 4687 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Shimizu, H. Arai and T. Seiyama, Sensors Actuators 7, 11 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    T. Maehara, K. Konishi, T. Kamimori, H. Aono, T. Naohara, H. Kikkawa, Y. Watanabe, and K. Kawachi, Jpn. J. Appl. Phys. 41, 1620 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    W. J. Dawson, Ceram. Bull. 67, 1673 (1988).

    CAS  Google Scholar 

  7. 7.

    S. Komarneni, E. Fregeau, E. Breval, and R. Roy, J. Am. Ceram. Soc. 71, C–26 (1988).

    Article  Google Scholar 

  8. 8.

    C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, and D. M. P. Mingos, Chem. Soc. Rev. 27, 213 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    S. Komarneni, Q. Li, K. M. Stefansson and R. Roy, J. Mater. Res. 8, 3176 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    S. Komarneni, M. C. D'Arrigo, C. Leonelli, G. C. Pellacani, and H. Katsuki, J. Am. Ceram. Soc. 81, 3041 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    C-K. Kim, J-H Lee, S. Katoh, R. Murakami, and M. Yoshimura, Mater. Res. Bull. 36, 2241 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    S. Verma, P. A. Joy, Y. B. Khollam, H. S. Potdar, and S. B. Deshpande, Mater. Lett. 58, 1092 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Am. Chem. Soc. 122, 6263 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Q. Chen, A. J. Rondinone, B. C. Chakoumakos, and Z. J. Zhang, J. Magn. Magn. Mater. 194, 1 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    B. D. Cullity, Introduction to Magnetic Materials (Reading, Addison-Wesley Publishing, 1972).

    Google Scholar 

  16. 16.

    V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958).

    CAS  Article  Google Scholar 

Download references


One of the authors, Seema Verma, is grateful to CSIR, India, for the financial support.

Author information



Corresponding author

Correspondence to Pattayil A. Joy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verma, S., Potdar, H.S., Date, S.K. et al. Synthesis of Superparamagnetic Magnesium Ferrite Nanoparticles by Microwave-Hydrothermal Method. MRS Online Proceedings Library 818, 312–317 (2004).

Download citation