Analysis of the Three-Dimensional Nanoscale Relationship of Ge Quantum Dots in a Si Matrix Using Focused Ion Beam Tomography

Abstract

It is well documented that buried layers in quantum dot (QD) superlattices influence the position of quantum dots in the subsequently grown layers through strain field interactions (e.g.1,23,4). Using the Focused Ion Beam (FIB) tomographic technique we have reconstructed the 3D relationship of successive layers of coherent Ge QDs separated by epitaxial Si capping layers - a “QD superlattice”.

Techniques such as Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) can only look at a single surface layer of QDs or, in the case of Transmission Electron Microscopy (TEM), look at a two-dimensional projection of a three-dimensional volume so that 3D relationships need to be inferred. Since the strain interactions are complex, an enhanced fundamental understanding of these self-organization mechanisms can more directly be obtained from full 3D reconstructions of these structures.

By capping with Si at 300oC we were able to grow QD superlattices with QDs tens of nanometers in height. This places them within the resolution of the FIB tomographic technique to reconstruct. Using the FIB we performed in-situ serial sectioning of the QD superlattice and then reconstructed the QD superlattice. The reconstruction was then analyzed to investigate the ordering of the QDs.

Results from a reconstruction of a superlattice matrix will be presented with analysis of the self-ordering of the QDs. Observations of a novel self-limiting (in height) morphology, the quantum mesa, associated with the capping technique used will also be discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    G. Springholz, M. Pinczzolits, V. Holy, S. Zerlauth, I. Vavra, G. Bauer, Physica E 9, 149–163 (2001).

    CAS  Article  Google Scholar 

  2. 2

    V. Le Thanh, V. Yam, Y. Zheng, D. Bouchier, Thin Solid Films 380, 2–9 (2000).

    CAS  Article  Google Scholar 

  3. 3

    J. Tersoff, C. Teichert, M.G. Lagally, Phys. Rev. Lett. 76, 1675–1678 (1996).

    CAS  Article  Google Scholar 

  4. 4

    F. Liu, S.E. Davenport, H.M. Evans, M.G. Lagally, Phys. Rev. Lett. 82, 2528–2531 (1999).

    CAS  Article  Google Scholar 

  5. 5

    C.J. Huang, D.Z. Li, B.W. Cheng, J.Z. Yu, Q.M. Wang, Appl. Phys. Lett. 77, 2852–2854 (2000).

    CAS  Article  Google Scholar 

  6. 6

    J. Tersoff, Phys. Rev. B 43, 9377–9380 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Madhukar A.; T.R. Ramachandran, A. Konkar, I. Mukhametzhanov, W. Yu, P. Chen, Appl. Surf. Sci. 123/124, 266–275 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Lutz M.A.; R.M. Feenstra, P.M. Mooney, J. Tersoff, J.O. Chu, Surf. Sci. 316, L1075–L1080 (1994).

    CAS  Article  Google Scholar 

  9. 9

    I.N. Stranski, L. Krastanov, Akad. Wiss. Wien, Math.-Naturwiss. Kl. II b, 146, 797 (1938).

    Google Scholar 

  10. 10

    D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64, 1943–1946 (1990).

    CAS  Article  Google Scholar 

  11. 11

    M. Tomitori, K. Watanabe, M. Kobayashi, O. Nishikawa, Appl. Surf. Sci. 76/77, 322–328 (1994).

    Article  Google Scholar 

  12. 12

    F.M. Ross, R.M. Tromp, M.C. Reuter, Science 286, 1931–1934 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Y.-W. Mo, D.E. Savage, B.S. Swartzenruber, M.G. Lagally, Phys. Rev. Lett. 65, 1020–1023 (1990).

    CAS  Article  Google Scholar 

  14. 14

    R. Hull and J.C. Bean, Germanium Silicon: Physics and Material, Semiconductors and Semimetals, 56, 6 (1999).

    Google Scholar 

  15. 15

    D.A. Glocker and S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Publishing, E1.0:8 (1995).

  16. 16

    A. Rastelli, E. Muller, H. von Kanel, Appl. Phys. Lett. 80, 1438–1440 (2002).

    CAS  Article  Google Scholar 

  17. 17

    JEOL LTD. Tokyo, Japan.

  18. 18

    FEI Company, Hillsboro, OR 97124.

  19. 19

    Photoshop, Version 6.0, Adobe Systems Inc., San Jose, CA 95110.

  20. 20

    Fovea Pro, Reindeer Graphics Inc., Asheville, NC 28801.

  21. 21

    MATLAB, Version 6.0, The Mathworks Inc., Natick, MA 01760.

  22. 22

    D.N. Dunn, R. Hull: Appl. Phys. Lett. 75, 3414–3416 (1999).

    CAS  Article  Google Scholar 

  23. 23

    D.N. Dunn, G.J. Shiflet, R. Hull: Rev. Sci. Instrum., 73, 330–334 (2002).

    CAS  Article  Google Scholar 

  24. 24

    A.J. Kubis, G.J Shiflet, D.N. Dunn, R. Hull, Met. Mater. Trans. A., In Press.

  25. 25

    J.L. Bischoff, C. Pirri, D. Dentel, L. Simon, D. Bolmont, L. Kubler, Mat. Sci. Eng. B 69/70, 374–379 (2000).

    Article  Google Scholar 

  26. 26

    P. Sutter, M.G. Lagally, Phys. Rev. Lett. 81, 3471–3474 (1998).

    CAS  Article  Google Scholar 

  27. 27

    A. Rastelli, E. Muller, H. von Kanel, Appl. Phys. Lett. 80, 1438–1440 (2002).

    CAS  Article  Google Scholar 

  28. 28

    D. Dentel, J.L. Bischoff, L. Kubler, J. Werckmann, M. Romeo, J. Crystal Growth 191, 697–710 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundations Materials Research Science and Engineering Center (MRSEC) on “Nanoscopic Materials Design” at the University of Virginia under Award Number DMR-0080016

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan J. Kubis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kubis, A.J., Vandervelde, T.E., Bean, J.C. et al. Analysis of the Three-Dimensional Nanoscale Relationship of Ge Quantum Dots in a Si Matrix Using Focused Ion Beam Tomography. MRS Online Proceedings Library 818, 181–187 (2004). https://doi.org/10.1557/PROC-818-M14.6.1

Download citation