Compact All Pass Transmission Filter using Photonic Crystal Slabs

Abstract

We show that both the coupled photonic crystal slab and the single photonic crystal slab structure can function as an optical all-pass transmission filter for normally incident light. The filter function is synthesized by designing the spectral properties of guided resonance in the slab. We expect this compact device to be useful for optical communication systems.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Lenz and C. K. Madsen, J. Lightwave Technol. 17, 1248 (1999).

    Article  Google Scholar 

  2. [2]

    C.K. Madsen, J.A. Walker, J.E. Ford, K.W. Goossen, T.N. Nielsen and G. Lenz, IEEE Photon. Techno. Lett. 12, 651 (2000).

    Article  Google Scholar 

  3. [3]

    M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, Appl. Phys. Lett. 70, 1438 (1997)

    CAS  Article  Google Scholar 

  4. [4]

    V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, J. Lightwave Technol. 17, 2050 (1999).

    Article  Google Scholar 

  5. [5]

    S. Fan and J. D. Joannopoulos, Phys. Rev. B, 65, 235112 (2002).

    Article  Google Scholar 

  6. [6]

    M. Boroditskky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, J. Lightwave Technol. 17, 2096 (1999).

    Article  Google Scholar 

  7. [7]

    A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich and L. A. Kolodziejski, Appl. Phys. Lett. 78, 563 (2001).

    CAS  Article  Google Scholar 

  8. [8]

    H. Y. Ryu, Y. H. Lee, R. L. Sellin, and D. Bimberg, Appl. Phys. Lett. 79, 3573 (2001).

    CAS  Article  Google Scholar 

  9. [9]

    M. Meier, A. Mekis, A. Dodabalapur, A. A. Timko, R. E. Slusher and J. D. Joannopoulos, Appl. Phys. Lett. 74, 7 (1999).

    CAS  Article  Google Scholar 

  10. [10]

    S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science, 293, 1123 (2000).

    Article  Google Scholar 

  11. [11]

    S.S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).

    CAS  Article  Google Scholar 

  12. [12]

    K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Methods for Electromagnetics (CRC Press, Boca Raton, FL, 1993); A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Methods (Artech House, Boston, 2000).

    Google Scholar 

  13. [13]

    W. Suh and S. Fan, Opt. Lett. 28, 1763, (2003)

    Article  Google Scholar 

  14. [14]

    Edward D. Palik, Handbook of optical constants of Solids (Academic Press, San Diego, Calif., 1985).

    Google Scholar 

  15. [15]

    Z. Wang, S. Fan, Phys. Rev. E, 68, 066616, (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the US Army Research Laboratories under Contract No. DAAD17-02-C-0101, and by the National Science Foundation (NSF) grant ECS-0200445. The computational time was provided by the NSF NRAC program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wonjoo Suh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suh, W., Fan, S. Compact All Pass Transmission Filter using Photonic Crystal Slabs. MRS Online Proceedings Library 817, 55–60 (2004). https://doi.org/10.1557/PROC-817-L2.3

Download citation