Low Temperature Poly-Si TFT Technology


Low temperature poly-Si TFT technology is reviewed and is discussed from a view point of device, fabrication process, and its possibility as FPD (Flat Panel Display) application. After the appearance of crystallization technique of SPC (Solid Phase Crystallization) using FA (Furnace Annealing) or ELA (Excimer Laser Annealing) using UV (Ultra-Violet) beam, the electronic property of poly-Si thin-film, which relates to the crystalinity of the grains, was improved drastically, and the process temperature for the TFT fabrication had been reduced below 600C down to 400C. As a result, improvement of device characteristic of poly-Si TFT such as an enhancement of carrier mobility or a reduction of leakage current has been studied intensively for the application to FPD (Flat Panel Display) on glass. Currently, extensive study is being done in order to realize a more functional SOG (System on Glass). By reducing the TFT process temperature down to 200C or below and by modifying a design for the device structure or the circuit in the pixel, O-LED (Organic LED) FPD addressed by uniform poly-Si TFTs is expected to mount on flexible plastic substrate such as on PES (PolyEtherSulphone). The poly-Si TFT has a possibility to develop as a smart system on plastic panel for unique applications as well as the conventional Si LSI in the ubiquitous IT (Information Technology) era.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Morozumi et al., Digest of SID, p.156 (1983).

    Google Scholar 

  2. 2.

    Digest of Technical papers on AM-LCD, p.71–88 (2001).

  3. 3.

    R.B. Iverson and R. Reif, J. Appl. Phys., 57, p.5169 (1985).

    Article  Google Scholar 

  4. 4.

    T. Noguchi, H. Hayashi and T. Ohshima, Jpn. J. Appl. Phys. 28, p. 146 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    T. Noguchi, IMID '01 DIGEST, p.731 (2001).

    Google Scholar 

  6. 6.

    J.S. Jung, J.Y. Kwon, Y.S. Park, H.S. Cho, K.B. Park, Y.X. Huaxiang, W.X. Xianyu and T. Noguchi, JKPS (2004). To be published. (Presented in 12th. ISPSA 04, Korea)

    Google Scholar 

  7. 7.

    T. Noguchi, H. Tsukamoto, T. Suzuki and H. Masuya, Extended Abstracts of the International Conference on SSDM, p.620 (1991).

    Google Scholar 

  8. 8.

    Noguchi and Y. Kanaishi, IEEE Ele. Dev. Lett. 10, p.543 (1989).

    CAS  Article  Google Scholar 

  9. 9.

    T. Noguchi, K. Tajima and Y. Morita, Mat. Res. Soc. Symp. Proc. 146, p.35 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    H. Hamada, Y. Aya, H. Abe, T. Nouda, K. Hirano and Y. Miyai, Proc. of Ele. Chem. Soc., 98–22, p.11 (1998).

    Google Scholar 

  11. 11.

    A. J. Tang, J. A. Tsai and R. Reif, and T. J. King, IEDM 20.2.1, p.513 (1995).

    Google Scholar 

  12. 12.

    H. Wang, M. Chan, S. Jager, V.M.C. Poon, M. Qin, Y. Wang and P.K. Ko, IEEE Trans. Electron Dev. Lett., 47, p.1580 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    T. Asano, T. Aoto and Y. Okada, Jpn. J. Appl. Phys. 36, p.1415 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    H. Kuriyama, T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. Tsuda and S. Nakano, Jpn. J. Appl. Phys. 32, p.6190 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    T. Noguchi, A. J. Tang, J. A. Tsai and R. Reif, Mat. Res. Soc. Symp. Proc. 403, p.357 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    R.S. Sposili, and J. S. Im, Appl. Phys. Lett. 69, p.2864 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    N. Matsuo and H. Hamada, Tech. Report of IEICE, ED2000-13, SDM 2000–13, p.21 (2000-04).

    Google Scholar 

  18. 18.

    D.Y. Kim, K.B. Park, J.Y. Kwon, J.S. Jung, W.X. Xianyu, Y.S. Park, and T. Noguchi, IMID'03 DIGEST, p.657 (2003).

    Google Scholar 

  19. 19.

    L. Mariucci, R. Carluccio, A. Pecora, V. Foglietti, G. Fortunato, D.D. Sala, Digest of Technical papers on AM-LCD, p.283 (1999).

    Google Scholar 

  20. 20.

    M.K. Han and I.H. Song, Digest of Technical papers on AM-LCD, p.75 (2003).

    Google Scholar 

  21. 21.

    K-J. Kramer, S. Talwar, A. M. MaCarthy and K.H. Weimer, IEEE Trans. Electron Dev. Lett. 17, p.4561 (1996).

    Article  Google Scholar 

  22. 22.

    S. Usui, T. Sameshima and M. Hara, Optoelectronics Devices and Technologies 4, p.235 (1989).

    CAS  Google Scholar 

  23. 23.

    J. Jang and K.W. Kim, Digest of Technical papers of AM-LCD, p.235 (1999).

    Google Scholar 

  24. 24.

    D.P. Gosain, T. Noguchi and S. Usui, Jap. Jpn. Appl. Phys., 39, p. L179 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    F. Omata and T. Serikawa, Digest of Technical papers on AM-LCD'99, p.243 (1999).

    Google Scholar 

  26. 26.

    D.Y.Kim H.S. Cho, K.B. Park, J.Y. Kwon, J.S. Jung and T. Noguchi, To be published in JKPS. (Presented in 12th. ISPSA 04, Korea)

  27. 27.

    M.C. Lee, S.M. Han, S.H. Kang, M.Y. Shin and M.K. Han, Technical Digest of IEDM 2003, 8.7.1, p.215.

  28. 28.

    N.D.Young, D.J. Mcculoch and R.M. Bunn, Digest of Technical papers on AM-LCD, p.47 (1997).

    Google Scholar 

  29. 29.

    A. Asano and T. Kinoshita, SID 02 DIGEST, p. 1196 (2002).

    Google Scholar 

  30. 30.

    S. Utsunomiya, T. Saeki, S. Inoue and T. Shimoda, Digest of Technical papers on AM LCD, p.37 (2002).

    Google Scholar 

Download references


Authors would like to acknowledge to the scientists in SAIT and in Sungkyunkwan University for encouragement.

Author information



Corresponding author

Correspondence to T. Noguchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Noguchi, T., Kim, D., Kwon, J. et al. Low Temperature Poly-Si TFT Technology. MRS Online Proceedings Library 814, 160–167 (2004). https://doi.org/10.1557/PROC-814-I1.4

Download citation