Investigations of PbxSr1-xTiO3 Thin Films and Ceramics for Microelectronic Applications


We have investigated electrical and optical properties of the lead strontium titanate {(PbxSr1-x)TiO3 or PST} ceramic and dielectric properties of the thin films of PST at low and high frequencies. (PbxSr1-x)TiO3 compositions with × ≤ 0.4 are paraelectric at room temperature and exhibit ferroelectric phase transition below room temperature. Only one phase transition in the PST system (compared to three in BaxSr1-xTiO3) was recorded. The studies indicated that PST has potential for tunable microwave devices in the paraelectric phase. In the present studies, Pb0.3Sr0.7TiO3 (PST30) ceramic was prepared by the conventional solid-state reaction method and thin films of PST were prepared by sol-gel technique. Structural, microstructural, dielectric, and Raman measurements were performed on these samples. Sharp phase transition was observed in case of the ceramic by dielectric and Raman measurements at 283 K. Raman measurements revealed well-pronounced soft-mode behavior below the Curie temperature in PST ceramic. The thin film of PST deposited on lanthanum aluminate substrate was highly (100) oriented and showed dielectric maxima at ∼280 K, which was close to that in case of the bulk. Eight element coupled micro-strip phase shifters (CMPS) was fabricated on the PST film and tested in the frequency range of 15-17 GHz. The average figure of merit of 49 °/dB for PST30 film in the Ku band at 533 kV/cm suggests the potentiality of these films for high frequency tunable dielectric devices.

This is a preview of subscription content, access via your institution.


  1. [1]

    O. Auciello, C.M. Foster, and R. Ramesh, Annu. Rev. Mater. Sci., 28, 501 (1998).

    CAS  Article  Google Scholar 

  2. [2]

    D.L. Polla, L.F. Francis, Annu. Rev. Mater. Sci., 28, 563 (1998).

    CAS  Article  Google Scholar 

  3. [3]

    G.H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999).

    CAS  Article  Google Scholar 

  4. [4]

    D. Dimos, C.H. Mueller, Annu. Rev. Mater. Sci., 28, 397, (1998).

    CAS  Article  Google Scholar 

  5. [5]

    S.B. Majumder, M. Jain, A. Martinez, F.W. Van Keuls, F.A. Miranda, and R.S. Katiyar, J. Appl. Phys., 90, 896 (2001).

    CAS  Article  Google Scholar 

  6. [6]

    F.A. Miranda, F.W. Van Keuls, R.R. Romanofsky, C.H. Mueller, S. Alterovitz, and G. Subramanyam, Integrated Ferroelectrics, 42, 131 (2002).

    CAS  Article  Google Scholar 

  7. [7]

    H.D. Wu, Z. Zhang, F. Barnes, C. M. Jackson, A. Kim, and J. D. Cuchiaro, IEEE Trans. Appl. Supercond., 4, 156 (1994).

    Article  Google Scholar 

  8. [8]

    A. Tombak, J-P. Maria, F. Ayguavives, Z. Jin, G. T. Stauf, A. Kingon, and A. Mortazawi, IEEE Microwave Wireless Components Lett., 12, 3 (2002).

    Article  Google Scholar 

  9. [9]

    S. Nomura and S. Sawada, J. Phys. Soc. Japan, 10, 108 (1955).

    CAS  Article  Google Scholar 

  10. [10]

    Y. Somiya, A.S. Bhalla, L.E. Cross, Int. J. Inorg. Mater., 3, 709 (2001).

    CAS  Article  Google Scholar 

  11. [11]

    H.J. Chung, J.H. Kim, and S.I. Woo, Chem. Mater. 13, 1441 (2001); H. J. Chung, and S.I. Woo, J. Vac. Sci. Technol. B, 19, 275, (2001).

    CAS  Article  Google Scholar 

  12. [12]

    C.C. Chou, C.S. Hou, G.C. Chang, H.F. Cheng, Appl. Surf Sci., 142, 413 (1999).

    CAS  Article  Google Scholar 

  13. [13]

    Y.K. Kim, K.S. Lee, and S. Baik, J. Mater. Res., 16, 2463, (2001).

    CAS  Article  Google Scholar 

  14. [14]

    M. Jain, P. Bhattacharya, Yu.I. Yuzyuk, R.S. Katiyar, and A.S. Bhalla, Proceedings of Materials Research Society Fall meeting, 784, C11.15.1 (2003).

    Google Scholar 

  15. [15]

    D.H. Kang, J.H. Kim, J.H. Park, K.H. Yoon, Mat. Res. Bulletin, 36, 265 (2001).

    CAS  Article  Google Scholar 

  16. [16]

    M. Jain, S. B. Majumder, R. Guo, A.S. Bhalla, and R.S. Katiyar, Materials Letters, 56, 692 (2002).

    Article  Google Scholar 

  17. [17]

    V.M. Naik, D. Haddad, R. Naik, J. Mantese, N. W. Schubring, A.L. Micheli, and G.W. Auner, J. Appl. Phys., 93 (2003) 1731.

    CAS  Article  Google Scholar 

  18. [18]

    M. Jain, Yu.I. Yuzyuk, R.S. Katiyar, Y. Somiya, and A.S. Bhalla, Ferroelectrics, (2003) (In press).

  19. [19]

    M. Jain, R.S. Katiyar, A.S. Bhalla, F.A. Miranda, and F.W. Van Keuls, Appl. Phys. Lett., (2004). (Submitted)

  20. [20]

    W.G. Nilsen and J.G. Skinner, J. Chem. Phys., 48, 2240 (1968).

    CAS  Article  Google Scholar 

  21. [21]

    M. Jain, Yu.I. Yuzyuk, R.S. Katiyar, Y. Somiya, and A.S. Bhalla, Physical Review B, (2004). (Submitted)

  22. [22]

    W. Kleemann, A. Albertini, M. Kuss, and R. Lindner, Ferroelectrics, 203, 57 (1997).

    CAS  Article  Google Scholar 

  23. [23]

    R. Ouillon, J.-P. Pinan-Lucarre, P. Ranson, Ph. Pruzan, S.K. Mishra, R. Ranjan, and D. Pandey, J. Phys.:Condens. Matter, 14, 2079 (2002).

    CAS  Google Scholar 

  24. [24]

    J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetský, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorný, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, and R. Waser, Phys. Rev. B, 64, 184111 (2001).

    Article  Google Scholar 

Download references


This work is supported in parts by NSF-INT (0097018), NASA-NCC5-518, and DOD (N00014- 02-1-0215), and DABT (63-98-1-002) grants. Author M.J. would like to thank Materials Characterization Center at the University of Puerto Rico for X-ray diffraction measurements. Y.Y. acknowledges the Russian Foundation for Basic Research (Grant No. 04-02-16163a).

Author information



Corresponding author

Correspondence to M. Jain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jain, M., Yuzyuk, Y., Katiyar, R. et al. Investigations of PbxSr1-xTiO3 Thin Films and Ceramics for Microelectronic Applications. MRS Online Proceedings Library 811, 13–18 (2003).

Download citation