MOCVD Processes for Electronic Materials Adopting Bi(C6H5)3 Precursor


MOCVD of Bi2O3 has been investigated using Bi(C6H5)3 precursor. The decomposition products obtained at various deposition temperatures were determined using in situ FT-IR analysis. Benzene was the main product formed in the heterogeneous decomposition of Bi(C6H5)3 at temperature lower than 450°C, while above 450°C typical products of the combustion of aromatic ring were observed. The effect of oxygen on the film composition and its role in the decomposition process was evaluated by XPS depth profiles. Moreover, preliminary studies on the initial step of the film deposition suggested that Bi2O3 nucleation rate depends upon precursor partial pressure.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. A. Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott Nature 374, 627 (1995).

    Article  Google Scholar 

  2. 2.

    L. H. Parker, A. F. Tasch, IEEE Circuit Devices Magn. 6, 17 (1990).

    Article  Google Scholar 

  3. 3.

    B. Aurivillius Ark. Kemi 1, 463 (1949).

    CAS  Google Scholar 

  4. 4.

    S. E. Cummins, L. E. Cross, Appl. Phys. Lett. 10, 14 (1967).

    CAS  Article  Google Scholar 

  5. 5.

    A. Kingon, Nature 401, 658 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    M. W. Chu, M. Ganne, P. Y. Tessier, D. Eon, M. T. Caldes, L. Brohan, Mat. Sci. Semicon. Proc. 5, 179, (2002).

    CAS  Article  Google Scholar 

  7. 7.

    A. Hardy, K. Van Werde, G. Vanhoyland M. K. Van Bael, J. Mullens, L. C. Van Poucke, Thermochim. Acta 397, 143 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    S. D. Bu, B. S. Kang, B. H. Park, T. W. Noh, J. Korean Phys. Soc. 36, 9 (2000).

    Google Scholar 

  9. 9.

    P. A. Williams, A. C. Jones, M. J. Crosbie, P. J. Wright, J. F. Bickley, A. Steiner, H. O. Davis, T. L. Leedham, G. W. Critchlow, Chem. Vapor. Depos 7, 205 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    R. Ramesh, S. Aggarwal, O. Auciello Mater. Sci. Eng., R-Rep 32, 191, (2001).

    Article  Google Scholar 

  11. 11.

    R. Zambrano Mat. Sci. Semicon. Proc. 5, 305 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    N. Nukaga, H. Ono, T. Shida, H. Machida, T. Suzuki, H. Funakubo, Integr. Ferroelectr. 4, 21 (2002).

    Google Scholar 

  13. 13.

    S. W. Kang, S.W. Rhee, J Electrochem. Soc. 150, C573 (2003)., 150, C573.

    CAS  Article  Google Scholar 

  14. 14.

    C. Bedoya, G. G. Condorelli, G. Anastasi, A. Baeri, F. Scerra, I. L. Fragalà, J. Lisoni, D. Wouters, Chem. Mat. submitted

  15. 15.

    G. G. Condorelli, S. Gennaro, I. L. Fragalà, Chem. Vapor. Depos, 6, 185, (2000).

    CAS  Article  Google Scholar 

  16. 16.

    N. B. Colthup, L. H. Daly, S. E. Wibiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1964) p. 220.

    Google Scholar 

  17. 17.

    W. C. Wu, L. F. Liao, C. F. Lien, J. L. Lin, Phys. Chem. Chem. Phys. 3, 4456 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    M. J. Viste, K. D. Gibson, S. J. Sibener, J. Catal. 191, 237 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    M. J. Fadden, C. M. Hadad, J. Phys. Chem. A 104, 8121 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    S. Sun, P. Lu, A. Fuierer, J. Cryst. Growth 205, 177 (1999).

    CAS  Article  Google Scholar 

Download references


Authors gratefully thank the European Commission (IST–2000–30153–FLEUR contract) and MIUR (FIRS project) for financial support.

Author information



Corresponding author

Correspondence to C. Bedoya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bedoya, C., Condorelli, G., Anastasi, G. et al. MOCVD Processes for Electronic Materials Adopting Bi(C6H5)3 Precursor. MRS Online Proceedings Library 811, 231–236 (2003).

Download citation