Arsenic diffusion in Si and Si0.9Ge0.1 alloys: Effect of defect injection


Results of intrinsic As diffusion in Si as well as in strained and relaxed Si0.9Ge0.1 layers are presented. Using Molecular Beam Epitaxy in-situ As doped epitaxial Si and compressively strained and relaxed Si-Ge layers were grown on Si substrates. The samples were annealed using Rapid Thermal Annealing (RTA) at 1000 °C. Arsenic diffusion is seen to be enhanced in SiGe than in Si. The enhancement factor is calculated to be 2.3 and 1.3 for relaxed and strained Si0.9Ge0.1, respectively. Also, using RTA in oxygen atmosphere, interstitial and vacancies were selectively injected in to the sample structures. Diffusion enhancement is also recorded in Si and Si-Ge structures with interstitial as well as vacancy injections over inert anneal. The results suggest that both interstitial and vacancy defects contribute to As diffusion in Si and Si0.9Ge0.1.


  1. 1.

    N. R. Zangenberg, J. Fage-Pederson, J. Lundsgaard Hanses, A. Nylandsted Larsen, J. Appl. Phys. 94, 3883 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    J. S. Christensen, H. H. Radamson, A. Yu. Kuznetsov, B. G. Svensson, J. Appl. Phys. 94, 6533 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    S. Eguchi, J. J. Lee, S. J. Rhee, D. L. Kwong, M. L. Lee, E. A. Fitzgerald, I. Aberg, J. L. Hoyt, Appl. Surf. Sci. 224, 59 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    P. Kuo, J.L. Hoyt, J.F. Gibbons, J.E. Turner, and D. Lefforge in Strained Layer Epitaxy-Material, Processing, and Device Applications, edited by Eugene A. Fitzgerald, Judy Hoyt, Keh-Yung Cheng, and John Bean, (Mater. Res. Soc. Symo. Proc. 395, Pittsburgh, PA, 1995) pp. 373–378.

  5. 5.

    P. Kringhoj, A. Nylandsted Larsen, S. Yu Shirayev, Phys. Rev. Lett., 76, 3372 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    S. Eguchi, J. L. Hoyt, C. W. Leitz, E. A. Fitzgerald, Appl. Phys. Lett., 80, 1743 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    A. Nylandsted Larsen, S. Yu. Shiryaev, P. Gaiduk, V. S. Tishkov, Nucl. Inst. Meth. Phys. Res. B, 120, 161 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    L. -F. Zou, Z. G. Wang, D. Z. Sun, T. W. Fab, X. F. Liu, J. W. Zhang, Nuclear Instruments and Methods in Physics Research B, 122, 639 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    M. J. Mitchell, P. Ashburn, J. M. Bonar, P. L. F. Hemment, Journal of Applied Physics, 93, 4526 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    P. Laitinen, I. Riihimäaki, J. Räaisäanen, and the ISOLDE Collaboration, Phys. Rev. Lett. 68, 155209 (2003).

    Google Scholar 

  11. 11.

    A. Pakfar, Ph. D. Thesis, INSA de Lyon, France, 2002.

  12. 12.

    J. M. Bonar, A. F. W. Willoughby, A. H. Dan, B. M. Mcgregor, W. Lerch, D. Loeffel-macher, G. A. Cooke, and M. G. Dowsett, J. Material Science: Materials in Electronics, 12, 219 (2001).

    CAS  Google Scholar 

  13. 13.

    SSUPREM4, User Manual, Silvaco International, 2002.

  14. 14.

    R. B. Fair, “Concentration Profiles of Diffused Dopants in Silicon”, in Impurity Doping Processes in Silicon, F. F. Yang ed., North-Holland, New York (1981).

    Google Scholar 

  15. 15.

    Ant Ural, Peter B. Griffin, James D. Plummer, J. Appl. Phys. 85, 6440 (1999).

    CAS  Article  Google Scholar 

Download references


The support of European IST project 2000/30129 FRENDTECH (Front-End Models for Silicon Future Technology) is kindly acknowledged.

Author information



Corresponding author

Correspondence to Suresh Uppal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uppal, S., Bonar, J.M., Zhang, J. et al. Arsenic diffusion in Si and Si0.9Ge0.1 alloys: Effect of defect injection. MRS Online Proceedings Library 809, 93 (2003).

Download citation