Reduced Pressure - Chemical Vapor Deposition of Ge thick layers on Si(001) for microelectronics and optoelectronics purposes

Abstract

Ge-based photodetectors operating in the telecommunication wavelength range (1.3–1.6 µm) of silica fibers are highly desirable for the development of optical interconnections on SOI substrates. We have therefore investigated the structural and optical properties of Ge thick films grown directly onto Si(001) substrates using a production-compatible Reduced Pressure Chemical Vapor Deposition system. The thick Ge layers grown using a low-temperature / high temperature approach are in a definite tensile-strain configuration, with a threading dislocation density for as-grown layers of the order of 3×107 cm–2. The surface of those Ge thick layers is rather smooth, especially when considering the large lattice mismatch in-between Ge and Si. The root mean square roughness is indeed of the order of 2 nm only for as-grown layers. The layers produced are of high optical quality. An absorption coefficient α ≈10000 cm–1 @ 1.3µm (4500 cm–1 @ 1.55µm) has been found at room temperature for our Ge thick layers. A 30 meV bandgap shrinkage with respect to bulk Ge (0.77 eV <=> 0.80 eV) is observed as well in those tensile-strained Ge epilayers.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Masini, L. Colace and G. Assanto, Mater. Sci. Eng. B 89, 2 (2002).

    Article  Google Scholar 

  2. [2]

    L. Colace, G. Masini and G. Assanto, IEEE J. Quant. Electron. 35, 1843 (1999).

    CAS  Article  Google Scholar 

  3. [3]

    L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Pelange and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).

    CAS  Article  Google Scholar 

  4. [4]

    L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada and L.C. Kimerling, Appl. Phys. Lett. 76, 1231 (2000).

    CAS  Article  Google Scholar 

  5. [5]

    S. Famà, L. Colace, G. Masini, G. Assanto and H.-C. Luan, Appl. Phys. Lett. 81, 586 (2002).

    Article  Google Scholar 

  6. [6]

    M.T. Currie, S.B. Samavedam, T.A. Langdo, C.W. Leitz and E.A. Fitzgerald, Appl. Phys. Lett. 72, 1718 (1998).

    CAS  Article  Google Scholar 

  7. [7]

    S.G. Thomas, S. Bharatan, R.E. Jones, R. Thoma, T. Zirkle, N.V. Edwards, R. Liu, X.D. Wang, Q. Xie, C. Rosenblad, J. Ramm, G. Isella and H. von Känel, J. Electron. Mater. 32, 976 (2003).

    CAS  Article  Google Scholar 

  8. [8]

    T.A. Langdo, C.W. Leitz, M.T. Currie, E.A. Fitzgerald, A. Lochfeld and D.A. Antoniadis, Appl. Phys. Lett. 76, 3700 (2000).

    CAS  Article  Google Scholar 

  9. [9]

    C. Hernandez, Y. Campidelli and D. Bensahel, US Patent 6,537,370 B1 (2003).

  10. [10]

    H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J. Sandland, K. Wada and L.C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).

    CAS  Article  Google Scholar 

  11. [11]

    J.M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J.M. Fédéli, M. Rouvière, L. Vivien and S. Laval, J. Appl. Phys. 95, 5905 (2004).

    CAS  Article  Google Scholar 

  12. [12]

    A. Sakai, T. Tatsumi and K. Aoyama, Appl. Phys. Lett. 71, 3510 (1997).

    CAS  Article  Google Scholar 

  13. [13]

    D.J. Eaglesham and M. Cerullo, Appl. Phys. Lett. 58, 2276 (1991).

    CAS  Article  Google Scholar 

  14. [14]

    Y. Ishikawa, K. Wada, D.D. Cannon, J.F. Liu, H.-C. Luan and L.C. Kimerling, Appl. Phys. Lett. 82, 2044 (2003).

    CAS  Article  Google Scholar 

  15. [15]

    S.M. Sze, Physics of Semiconductor Devices, 2nd edition, John Wyley and Sons, 1981.

    Google Scholar 

  16. [16]

    J.M. Hartmann, Y. Bogumilowicz, P. Holliger, F. Laugier, R. Truche, G. Rolland, M.N. Séméria, V. Renard, E.B. Olshanetsky, O. Estibals, Z.D. Kvon, J.C. Portal, L. Vincent, E. Cristiano and A. Claverie, Semicond. Sci. Technol. 19, 311 (2004).

    CAS  Article  Google Scholar 

  17. [17]

    W.C. Dash and R. Newman, Phys. Rev. 99, 1151 (1955).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Réseau Micro et Nanotechnologie (RMNT). The authors would like to thank Y. Bogumilowicz (ST), G. Rabillé and M. Burdin for their help in defect revelation, operating the Epi Centura and for the XRD characterizations, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.M. Hartmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartmann, J., Papon, A., Holliger, P. et al. Reduced Pressure - Chemical Vapor Deposition of Ge thick layers on Si(001) for microelectronics and optoelectronics purposes. MRS Online Proceedings Library 809, 43 (2003). https://doi.org/10.1557/PROC-809-B4.3

Download citation