Skip to main content
Log in

Material and optical properties of GaAs grown on (001) Ge/Si pseudo-substrate

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

One of the major challenges during recent years was to achieve the compatibility of III-V semiconductor epitaxy on silicon substrates to combine opto-electronics with high speed circuit technology. However, the growth of high quality epitaxial GaAs on Si is not straightforward due to the intrinsic differences in lattice parameters and thermal expansion coefficients of the two materials. Moreover, antiphase boundaries (APBs) appear that are disadvantageous for the fabrication of light emitting devices. Recently the successful fabrication of high quality germanium layers on exact (001) Si by chemical vapor deposition (CVD) was reported. Due to the germanium seed layer the lattice parameter is matched to the one of GaAs providing for excellent conditions for the subsequent GaAs growth. We have studied the material morphology of GaAs grown on Ge/Si PS using atomic layer epitaxy (ALE) at the interface between Ge and GaAs. We present results on the reduction of APBs and dislocation density on (001) Ge/Si PS when ALE is applied. The ALE allows the reduction of the residual dislocation density in the GaAs layers to 105 cm−2 (one order of magnitude as compared to the dislocation density of the Ge/Si PS). The optical properties are improved (ie. increased photoluminescence intensity). Using ALE, light emitting diodes based on strained InGaAs/GaAs quantum well as well as of In(Ga)As quantum dots on an exactly oriented (001) Ge/Si pseudo-substrate were fabricated and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, N. Otsuka, J. Appl. Phys. 68 (7), R31, (1990) and references therein.

    Google Scholar 

  2. A. Georgakilas, P. Panayotatos, J. Stoemenos, J.-L. Mourrain, A. Christou, J. Appl. Phys. 71 (6), 2679 (1992).

    Google Scholar 

  3. M.E. Groenert, C. L. Leitz, A.J. Pitera, V. Yang, H. Lee, R.J. Ram, E.A. Fitzgerald, J. Appl. Phys. 93 (1), 362 (2003).

    Google Scholar 

  4. Y. Chriqui, G. Saint Girons, S. Bouchoule, J-M. Moison, G. Isella, H. von Kaenel, I. Sagnes, Electron Letters 39 (23), 1658 (2003).

    Google Scholar 

  5. S. M. Ting, E.A. Fitzgerald, J. Appl. Phys. 87 (5), 2618 (2000).

    Google Scholar 

  6. C. Hernandez, Y. Campidelli, D. Simon, D. Bensahel, I. Sagnes, G. Patriarche, P. Boucaud, S. Sauvage, J. Appl. Phys. 86, 1145 (1999).

    Google Scholar 

  7. T. Suntola, Handbook of crystal growth vol. 3, edited by Hurle (Elsevier Science Publisher 1994) p.602

  8. A. Georgakilas, J. Stoemenos, K. Tsagaraki, Ph. Komninou, N. Flevaris, P. Panayotatos, A. Christou, J. Mater. Res. 8 (8), 1908 (1993).

    Google Scholar 

  9. D.P. Malta, J.B. Posthill, R.J. Markunas, T.P. Humphreys, Appl. Phys. Lett. 60 (7), 844 (1992).

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the European Community (IST-GROWTH program, “ECOPRO-SiGe” (GRD2-2000-30064) project) and by the “Région Ile de France” and the “Conseil Général de l'Essonne”.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chriqui, Y., Largeau, L., Patriarche, G. et al. Material and optical properties of GaAs grown on (001) Ge/Si pseudo-substrate. MRS Online Proceedings Library 809, 24 (2003). https://doi.org/10.1557/PROC-809-B2.4

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-809-B2.4

Navigation