Skip to main content
Log in

Atomically Controlled Impurity Doping in Si-Based CVD Epitaxial Growth

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Atomic-order surface reaction processes on the group IV semiconductor surface are formulated based on the Langmuir-type surface adsorption and reaction scheme. In in-situ doped Si1-xGex epitaxial growth on the (100) surface in a SiH4-GeH4-dopant (PH3, or B2H6 or SiH3CH3)-H2 gas mixture, the deposition rate, the Ge fraction and the dopant concentration are explained quantitatively assuming that the reactant gas adsorption/reaction depends on the surface site materials and that the dopant incorporation in the grown film is determined by Henry's law. Self-limiting formation of 1-3 monolayers of group IV or related atoms in the thermal adsorption and reaction of hydride gases (SiH4, GeH4, NH3, PH3, CH4 and SiH3CH3) on Si(100) and Ge(100) are generalized based on the Langmuir-type model. Epitaxial Si or SiGe grown on N, P or B layers already-formed on Si(100) or SiGe(100) surface is achieved. It is found that higher level of electrical active P atoms exist in such film, compared with doping under thermal equilibrium conditions. Furthermore, the capability of atomically controlled processing for doping of advanced devices with critical requirements for dopant dose and location control is demonstrated for the base doping of SiGe:C heterojunction bipolar transistors (HBTs). These results open the way to atomically controlled technology for ultra-large-scale integrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Meyerson. Appl. Phys. Lett. 48, 1797 (1986).

    Google Scholar 

  2. J. Murota, N. Nakamura, M. Kato, N. Mikoshiba and T. Ohmi. Appl. Phys. Lett. 54, 1007 (1989).

    Google Scholar 

  3. J. Murota and S. Ono. Jpn. J. Appl. Phys. 33, 2290 (1994).

    Google Scholar 

  4. J. Murota, T. Matsuura and M. Sakuraba. Surf. Interface Anal. 34, 423 (2002).

    Google Scholar 

  5. B. Tillack, B. Heinemann, D. Knoll. Thin Solid Films 369, 189 (2000).

    Google Scholar 

  6. D. Lee, S. Takehiro, M. Sakuraba, J. Murota and T. Tsuchiya. Appl. Surf. Sci. 224, 254 (2004).

    Google Scholar 

  7. R. Banisch, B. Tillack, M. Pierschel, K. Pressel, R. Barth, D. Kruger and G. Ritter. MRS Symp. Proc. 450, 213 (1997).

    Google Scholar 

  8. B. Tillack, Y. Yamamoto, D. Knoll, B. Heinemann, P. Schley, B. Senapati and D. Krüger. Appl. Surf. Sci. 224, 55 (2004).

    Google Scholar 

  9. J. Murota, T. Matuura and M. Sakuraba, in Defect in Silicon/1999, T. Abe, W.M. Bullis, S. Kobayashi, W. Lin and P. Wagner, Editors, PV 99-1, p. 189, The Electrochemical Society, Pennington, NJ (1999).

    Google Scholar 

  10. D. Lee, T. Noda, H. Shim, M. Sakuraba, T. Matsuura, J. Murota. Jpn. J. Appl. Phys. 40, 2697 (2001).

    Google Scholar 

  11. A. Moriya, M. Sakuraba, T. Matsuura and J. Murota. Thin Solid Films 343/344, 535 (1999).

    Google Scholar 

  12. T. Noda, D. Lee, H. Shim, M. Sakuraba, T. Matsuura and J. Murota. Thin Solid Films 380, 57 (2000).

    Google Scholar 

  13. J. Noh, M. Sakuraba, J. Murota, S. Zaima and Y. Yasuda. Appl. Surf. Sci. 212, 679 (2003).

    Google Scholar 

  14. S. Zaima and Y. Yasuda. J. Vac. Sci. Technol. B 16, 2623 (1998).

    Google Scholar 

  15. L. Papagno, X.Y. Shen, J. Anderson, G.S. Spagnolo and G.J. Lapeyre. Phys. Rev. B 34, 7188 (1986).

    Google Scholar 

  16. P. Gupta, V.L. Colvin and S.M. George. Phys. Rev. B. 37, 8234 (1988).

    Google Scholar 

  17. M. Sakuraba, J. Murota and S. Ono. J. Appl. Phys. 75, 3701 (1994).

    Google Scholar 

  18. M. Sakuraba, T. Matsuura and J. Murota, in Proc. 5th Int. Symp. Cleaning Technology in Semiconductor Device Manufacturing, J. Ruzyllo and R.E. Novak, Editors, PV 97-35, p. 213, The Electrochemical Society, Pennington, NJ (1997).

  19. J. Murota, M. Sakuraba and S. Ono. Appl. Phys. Lett. 62, 2353 (1993).

    Google Scholar 

  20. M. Sakuraba, J. Murota, N. Mikoshiba and S. Ono. J. Crystal Growth 115, 79 (1991).

    Google Scholar 

  21. T. Watanabe, A. Ichikawa, M. Sakuraba, T. Matsuura and J. Murota. J. Electrochem. Soc. 145, 4252 (1998).

    Google Scholar 

  22. T. Watanabe, M. Sakuraba, T. Matsuura and J. Murota. Jpn. J. Appl. Phys. 38, 515 (1999).

    Google Scholar 

  23. M. Sakuraba, J. Murota, T. Watanabe, Y. Sawada and S. Ono. Appl. Surf. Sci. 82-83, 354 (1994).

    Google Scholar 

  24. J. Murota, M. Sakuraba, T. Watanabe, T. Matsuura and Y. Sawada. J. Phys. IV France 5, C5–1101 (1995).

    Google Scholar 

  25. T. Watanabe, M. Sakuraba, T. Matsuura and J. Murota. Jpn. J. Appl. Phys. 36, 4042 (1997).

    Google Scholar 

  26. A. Izena, M. Sakuraba, T. Matsuura and J. Murota. J. Crystal Growth 188, 131 (1998).

    Google Scholar 

  27. T. Takatsuka, M. Fujiu, M. Sakuraba, T. Matsuura and J. Murota. Appl. Surf. Sci. 162-163, 156 (2000).

    Google Scholar 

  28. Y. Shimamune, M. Sakuraba, T. Matsuura and J. Murota. Appl. Surf. Sci. 162-163, 388 (2000).

    Google Scholar 

  29. B. Tillack. Thin Solid Films 318, 1 (1998).

    Google Scholar 

  30. M. Nomura, M. Sakuraba and J. Murota. 2nd Int. Workshop on New Group IV (Si-Ge-C) Semiconductors (SiGeC Workshop, Kofu, Japan, June 2-4) (2002), Abs.No.VI-09.

    Google Scholar 

  31. Y. Jeong, M. Sakuraba and J. Murota. Appl. Phys. Lett. 82, 3472 (2003).

    Google Scholar 

  32. Y. Jeong, M. Sakuraba and J. Murota. Appl. Surf. Sci. 224, 197 (2004).

    Google Scholar 

  33. Y. Shimamune, M. Sakuraba, T. Matsuura and J. Murota. Thin Solid Films 380, 134 (2000).

    Google Scholar 

  34. Y. Shimamune, M. Sakuraba, J. Murota and B. Tillack. Appl. Surf. Sci. 224, 202 (2004).

    Google Scholar 

  35. R.B. Fair and J.C.C. Tsai. J. Electrochem. Soc. 124, 1107 (1977).

    Google Scholar 

  36. B. Tillack, P. Zaumseil, G. Morgenstern, D. Krüger and G. Ritter. Appl. Phys. Lett. 67, 1143 (1995).

    Google Scholar 

Download references

Acknowledgments

The study was partially supported by a Grant-in-Aid for Priority Area Research B (No.11232201) and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murota, J., Sakuraba, M. & Tillack, B. Atomically Controlled Impurity Doping in Si-Based CVD Epitaxial Growth. MRS Online Proceedings Library 809, 101 (2003). https://doi.org/10.1557/PROC-809-B10.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-809-B10.1

Navigation