Reduced Pressure - Chemical Vapor Deposition of high Ge content (20% - 55%) SiGe virtual substrates


We have studied the strain state, film and surface morphology of SiGe virtual substrates (Ge concentrations in-between 20% and 55%) grown by reduced pressure–chemical vapor deposition. The macroscopic degree of strain relaxation of those virtual substrates is equal to 97.2 ± 1.5%. The misfit dislocations generated to relax the lattice mismatch between Si and SiGe are mostly confined inside the graded layer. Indeed, the threading dislocations density obtained for Ge concentrations of 20% and 26% is indeed typically of the order of 7.5 ± 2.5 105cm–2. Low surface root mean square roughness have been obtained, with values in-between 2 and 5 nm. In order to check the electronic quality of our layers, we have grown a MODFET-like heterostructure, with a buried tensile-strained Si channel 8 nm thick embedded inside SiGe 26%. We have obtained a well-behaved 2-dimensional electron gas in the Si channel, with electron sheet densities and mobilities at 1.45K of 5.4×1011 cm−2 and 212 000 cm2 V−1 s−1, respectively.

This is a preview of subscription content, access via your institution.


  1. [1]

    F. Schäffler, Semicond. Sci. Technol. 12, 1515 (1997).

    Article  Google Scholar 

  2. [2]

    T.E. Whall and E.H. C. Parker, J. Phys. D: Appl. Phys. 31, 1397 (1998).

    CAS  Article  Google Scholar 

  3. [3]

    M.T. Currie, C.W. Leitz, T.A. Langdo, G. Taraschi, E.A. Fitzgerald and D.A. Antoniadis, J. Vac. Sci. Technol. B19, 2268 (2001).

    Article  Google Scholar 

  4. [4]

    C.W. Leitz, M.T. Currie, M.L. Lee, Z.-Y. Cheng, D.A. Antoniadis and E.A. Fitzgerald, J. Appl. Phys. 92, 3745 (2002).

    CAS  Article  Google Scholar 

  5. [5]

    J.M. Hartmann, Y. Bogumilowicz, P. Holliger, F. Laugier, R. Truche, G. Rolland, M.N. Séméria, V. Renard, E.B. Olshanetsky, O. Estibal, Z.D. Kvon, J.C. Portal, L. Vincent, F. Cristiano and A. Claverie, Semicond. Sci. Technol. 19, 311 (2004).

    CAS  Article  Google Scholar 

  6. [6]

    J.M. Hartman, F. Champay, V. Loup, G. Rolland and M.N. Séméria, J. Cryst. Growth 241, 93 (2002).

    Article  Google Scholar 

  7. [7]

    J.M. Hartmann, B. Gallas, J. Zhang and J.J. Harris, Semicond. Sci. Technol. 15, 370 (2000).

    CAS  Article  Google Scholar 

  8. [8]

    E.A. Fitzgerald, M.T. Currie, S.B. Samavedam, T.A. Langdo, G. Tarashi, V. Yang, C.W. Leitz and M.T. Bulsara, Phys. Status Solidi A 171, 227 (1999); E.A. Fitzgerald, A.Y. Kim, M.T. Currie, T.A. Langdo, G. Tarashi and M.T. Bulsara, Mater. Sci. Eng. B 67, 53 (1999).

    CAS  Article  Google Scholar 

  9. [9]

    K. Ismail, M. Aarafa, K.L. Saenger, J.O. Chu and B.S. Meyerson, Appl. Phys. Lett. 66, 1077 (1995).

    CAS  Article  Google Scholar 

  10. [10]

    H. von Känel, M. Kummer, G. Isella, E. Müller and T. Hackbarth, Appl. Phys. Lett. 80, 2922 (2002).

    Article  Google Scholar 

  11. [11]

    S.B. Samavedam, W.J. Taylor, J.M. Grant, J.A. Smith, P.J. Toblin, A. Dip, A.M. Phillips and R. Liu, J. Vac. Sci. Technol. B 17, 1424 (1999).

    CAS  Article  Google Scholar 

  12. [12]

    J.G. Fiorenza, G. Braithwaite, C.W. Leitz, M.T. Currie, J. Yap, F. Singaporewala, V.K. Yang, T.A. Langdo, J. Carlin, M. Sommerville, A. Lochtefeld, H. Badawi and M.T. Bulsara, Semicond. Sci. Technol. 19, L4 (2004).

    CAS  Article  Google Scholar 

Download references


G. Rabillé and M. Burdin are gratefully acknowledged for their help in operating the Epi Centura and for the XRD experiments, respectively. The authors would also like to thank D. Bensahel (STMicroelectronics) and M. Gendry (ECL) for their support and for useful scientific discussions. This work was in parts funded by the french “Smartstrain” RMNT project.

Author information



Corresponding author

Correspondence to Y. Bogumilowicz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogumilowicz, Y., Hartmann, J., Laugier, F. et al. Reduced Pressure - Chemical Vapor Deposition of high Ge content (20% - 55%) SiGe virtual substrates. MRS Online Proceedings Library 809, 19 (2003).

Download citation