Symposium Y: Gan and Related Alloys MOCVD AlGaN/GaN HFETs on Si: Challenges and Issues


AlGaN/GaN based high power, high frequency high electron mobility transistors (HEMTs) have been in development for over a decade. Although much progress has been made, AlGaN/GaN HEMT technology has yet to be commercialized. The choice of silicon as the substrate for the growth of GaN-based epi layers will enable commercialization of AlGaN/GaN based HEMTs, because of its maturity, scalability, reproducibility and economy. One of the epitaxial issues pertaining to the growth of AlGaN/GaN HEMTs on Si is the understanding of parasitic losses that can adversely impact the RF device performance. The effect of the III-N MOCVD process on the resistivity of the Si substrate, and correlations between the Si substrate resistivity and AlGaN/GaN HEMT RF characteristics are presented. Optimization of the MOCVD growth process led to a reduction in parasitic doping of the Si substrate. This resulted in the following improvements: (a) small signal gain increased from 17 to 21dB, (b) the cut-off frequency increased from 7 to 11GHz and (c) the maximum frequency of oscillation improved from 12 to 20GHz. This optimized process will enhance performance of AlGaN/GaN HEMTs at higher frequencies.

This is a preview of subscription content, access via your institution.


  1. 1

    M. Androulidaki, A. Georgakilas, F. Peiro, K. Amimer, M. Zervos, K. Tsagaraki, M. Dimakos, and A. Cornet, Phys. Stat. Sol. (a) 188, No.2, 515 (2001).

    CAS  Article  Google Scholar 

  2. 2

    D. Wang, S. Yoshida, M. Ichikawa, J. Cryst. Growth, 242, 20 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Seong_Hwan Jang, Seung-Jae Lee, In-Seok Seo, Haeng-Keun Ahn, Oh-Yeon Lee, Jae-Young Leem, Cheul-Ro Lee, J. Cryst Growth, 241, 289 (2002)

    CAS  Article  Google Scholar 

  4. 4

    M. Marso, P. Javorka, Y. Dikme, H. Kalisch, J. Bernát, C. Shäfer, B. Schineller, A.v.d. Hart, M. Volter, A. Fox, R. H. Jansen, M. Heuken, P. Kordoš, and H. Lűth, Phys. Stat. Sol. (a), 200, No. 1, 179 (2003)

    CAS  Article  Google Scholar 

  5. 5

    P. Javorka, A. Alam, A. Fox, M. Marso, M. Heuken and P. Kordoš, Electronics Letters, 38, No. 6, 288 (2002)

    CAS  Article  Google Scholar 

  6. 6

    M. Marso, M. Wolter, P. Javorka, P. Kordoš, and H. Lűth, App. Phys. Lett., 82, No. 4, 633, 2003.

    CAS  Article  Google Scholar 

  7. 7

    Pradeep Rajagopal, Thomas Gehrke, John C. Roberts, J. D. Brown, T. Warren Weeks, Edwin L. Piner, and Kevin J. Linthicum, Mat. Res. Soc. Symp. Proc., 743, 3 (2003).

    CAS  Google Scholar 

  8. 8

    S. Singhal, J. D. Brown, R. Borges, E. Piner, W. Nagy, A. Vescan, GAAS 2002 Conference Proceedings, Milan, Italy. Sept. 23–27 (2002).

    Google Scholar 

  9. 9

    Vescan, A., Brown, J. D., Johnson, J. W., Therrien, R., Gehrke, T., Rajagopal, P., Roberts, J. C., Singhal, S., Nagy, W., Borges, R., Piner, E., & Linthicum, K, Physica Status Solidi (c), 0, No.1, 52, (2002).

    Article  Google Scholar 

  10. 10

    J. D. Brown, Ric Borges, Edwin Piner, Andrei Vescan, Sameer Singhal, Robert Therrien, Solid State Electronics, 46 1535 (2002).

    CAS  Article  Google Scholar 

Download references


We would like to acknowledge the Office of Naval Research (ONR) for supporting this work under contracts N00014-00-M-0159 (Phase I, Colin Wood contract monitor) and N00014-01-C-0253 (Phase II, John Zolper and Harry Dietrich contract monitors).

Author information



Corresponding author

Correspondence to Pradeep Rajagopal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rajagopal, P., Roberts, J.C., Cook, J.W. et al. Symposium Y: Gan and Related Alloys MOCVD AlGaN/GaN HFETs on Si: Challenges and Issues. MRS Online Proceedings Library 798, 695–700 (2003).

Download citation