Abstract
The photoluminescence (PL) properties of GaN nanorods were studied utilizing UV micro-photoluminescence. The room temperature PL of the GaN nanorods exhibits one strong emission line. The PL intensity as a function of the laser power was investigated in order to determine whether this emission originates from an excitonic or a bandgap recombination process. Our analysis indicates that the PL of the rods is excitonic-like and very similar to the behavior of the free exciton A in GaN thin films. However, for a relatively large and compact ensemble of rods, the PL intensity exhibits a significant saturation occurring already at relatively low laser power. We attribute the intensity saturation to the laser heating and heat trapping which takes place in the enclosure of the ensemble.
This is a preview of subscription content, access via your institution.
References
- 1.
Semiconductors and semimetals, Vol. 50 and 57, edited by J. I. Pankove and T. D. Moustakas (Academic, San Diego, 1999).
- 2.
H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
- 3.
R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, Phys. Rev. B 4, 1211 (1971).
- 4.
B. Monemar, Phys. Rev. B 10, 676 (1974).
- 5.
J. I. Pankove, J. E. Berkeyheiser, H. P. Maruska, and J. Wittke, Solid State Commun. 8, 1051 (1970).
- 6.
A. P. Purdy, Chem. Matter. 11, 1648 (1999).
- 7. a)
L. Bergman, X. B. Chen, J. Feldmeier, and A. P. Purdy, Appl. Phys. Lett. 83, 764 (2003). b)_L. Bergman, et. al. MRS Proceedings V. 776, Q1.1 (spring 2003)
- 8.
W. -Q. Han, and A. Zettl, Appl. Phys. Lett. 81, 5051 (2002).
- 9.
M. W. Lee, H. Z. Twu, C. -C. Chen, and C. -H. Chen, Appl. Phys. Lett. 79, 3693 (2001).
- 10.
X. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
- 11.
Shirong Jin, Yanlan Zheng, and Aizhen Li, J. Appl. Phys. 82, 3870 (1997).
- 12.
T. Taguchi, J. Shirafuji, and Y. Inuishi, Phys. Status Solidi B 68, 727 (1975).
- 13.
D. E. Cooper, J. Bajaj, and P. R. Newmann, J. Cryst. Growth 86, 544 (1988).
- 14.
Z. C. Feng, A. Mascarenhas, and W. J. Choyke, J. Lumin. 35, 329 (1986).
- 15.
Q. Kim and D. W. Langer, Phys. Status Solidi B 122, 263 (1984).
- 16.
T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45, 8989 (1992).
- 17.
J. E. Fouquet and A. E. Siegman, Appl. Phys. Lett. 46, 280 (1984).
- 18.
J. I. Pankove, Optical processes in semiconductors (Dover publications, New York), pp. 166.
- 19.
A. V. Rodina, M. Dietrich, A. Göldner, L. Eckey, A. Hoffmann, Al. L. Efros, M. Rosen, and B. K. Meyer, Phys. Rev. B 64, 115204 (2001).
- 20.
Claude Weisbuch, Borge Vinter, Quantum semiconductor structures (Academic Press, INC. Boston, 1991).
- 21.
S. Murugkar, R. Merlin, A. Botchkarev, A. Salvador, H. Morkoc: J. Appl. Phys. 77, 6042 (1995).
- 22.
L. Bergman, M. Dutta, and R.J. Nemanich, “Raman Analysis of Wide Band Gap Nitrides; Film, Crystals, and Superlatices”, In Raman Scattering in Materials Science Science p. 273 (Editors: R. Merlin and W.H. Weber, Springer Verlag 2000).
Acknowledgments
Leah Bergman gratefully acknowledges NSF CAREER DMR-0238845, NSF-EPS-0132626. Andrew Purdy gratefully acknowledges the Office of Naval Research.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, XB., Morrison, J.L., Penner, M.K. et al. Origins of Light Emission and Efficiency Saturation of the Photoluminescence of GaN Nanocrystallites. MRS Online Proceedings Library 798, 659–664 (2003). https://doi.org/10.1557/PROC-798-Y5.73
Published:
Issue Date: