GaN layers re-grown on etched GaN templates by plasma assisted molecular beam epitaxy


The growth of high-quality GaN by plasma assisted molecular beam epitaxy (MBE) is challenging, in part due to the constraint of heteroepitaxy since GaN substrates are not yet commercially available and isotropic nature of growth. Despite the large lattice and thermal mismatch between sapphire and GaN, the former is still the most commonly used substrate for the GaN-based optical devices at present. In this paper, we demonstrate a re-growth technique to obtain an improved quality GaN by MBE on GaN template on sapphire where the grossly defective regions have been removed. This GaN template is formed by MBE growth of GaN followed by wet chemical etching to selectively remove the defective region. Improved quality GaN was re-grown on such a template under Ga rich conditions to a thickness of about 1 micron. After re-growth, the surface of GaN is atomically smooth with spiral features in the short range. The low temperature PL of the re-grown GaN is superior to those of MBE GaN films directly on sapphire. Atomic force microscopy (AFM) images reveal a two-dimensional re-growth initiating in regions free of extended defects. The results show that the selectively etched GaN on sapphire can be used as a good template to improve the quality of GaN.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    F. Omnes, N. Marenco, B. Beaumont, and Ph. De Mierry, J. Appl. Phys. 86, 5286 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 70, 616 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    Hadis Morkoç, Aldo Di Carlo and R. Cingolani, “GaN-Based Modulation Doped FETs and UV Detectors”, Solid State Electronics, Volume 46, Issue 2 pp. 157–202, (2002).

    Article  Google Scholar 

  6. 6.

    Hadis Morkoç, “Beyond SiC! III-V Nitride Based Heterostructures and Devices” in SiC Materials and Devices, Ed. Y. S. Park, Academic Press, Willardson and Beer Series. Vol. 52, pp. 307–394, (1998).

    Article  Google Scholar 

  7. 7.

    G. Coli, K. K. Bajaj, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 78, 1829 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    S. C. Choi, J.-H. Kim, J. Y. Choi, K. J. Lee, K. Y. Lim and G. M. Yang, J. Appl. Phys. 87, 172 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    D. A. Stocker, E. F. Schubert and J. M. Redwing, Appl. Phys. Lett. 73, 2654 (1998)

    CAS  Article  Google Scholar 

  10. 10.

    P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoç, and R. J. Molnar, Appl. Phys. Lett. 77, 3532 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 85, 7470 (1999).

    Article  Google Scholar 

Download references


This work was supported by grants from ONR (Drs. C., E. C. Wood and Y. S. Park), AFOSR (Drs. G. L. Witt and T. Steiner),), and NSF (Drs U. Varshney, and L. Hess).

Author information



Corresponding author

Correspondence to L. He.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, L., Gu, X., Xie, J. et al. GaN layers re-grown on etched GaN templates by plasma assisted molecular beam epitaxy. MRS Online Proceedings Library 798, 205–208 (2003).

Download citation