Emission Mechanisms in UV Emitting GaN/AlN Multiple Quantum Well Structures


The need for efficient UV emitting semiconductor sources has prompted the study of a number of heterostructures of III-N materials. In this work, the temperature dependence of the photoluminescence (PL) properties of UV-emitting GaN/AlN multiple quantum well (MQW) heterostructures were investigated in detail. In all samples studied, the structure consisted of 20 GaN quantum wells, with well widths varying between 7 and 15Å, clad by 6nm AlN barriers, grown on top of a thick AlN buffer that was deposited on sapphire by molecular beam epitaxy. The observed energy corresponding to the peak of the emission spectrum is in agreement with a model that includes the strong confinement present in these structures and the existence of the large built-in piezoelectric field and spontaneous polarization present inside the wells. The observed emission varies from 3.5 eV (15 Å well) to 4.4 eV (7 Å well). Two activation energies associated with the photoluminescence quenching are extracted from the temperature dependence of the time-integrated PL intensity. These activation energies are consistent with donor and acceptor binding energies and the PL is dominated by recombination involving carriers localized on donor and/or acceptor states.

Moreover, the temperature dependence of the full width at half-maximum (FWHM) of the PL feature indicates that inhomogeneous broadening dominates the spectrum at all temperatures. For the 15 and 13 Å wells, we estimate that the electron-phonon interaction is responsible for less than 30% of the broadening at room temperature. This broadening is negligible in the 9 Å wells over the entire temperature range studied. Well width fluctuations are primarily responsible for the inhomogeneous broadening, estimated to be of the order of 250meV for one monolayer fluctuation in well width.

This is a preview of subscription content, access via your institution.


  1. 1.

    H. Wu, W. J. Schaff, G. Koley, M. Furis, A. N. Cartwright, K. A. Mkhoyan, J. Silcox, W. Henderson, W. A. Doolittle, and A.V. Fall MRS 2002. Osinsky, Mat. Res. Soc. Symp. Proc. 743, art. no. L.6.2.1 (2003).

    Google Scholar 

  2. 2.

    M. Furis, F. Chen, A. N. Cartwright, H. Wu, and W. J. Schaff, Mat. Res. Soc. Symp. Proc. 743, art. no. L11.14 (2002).

    Article  Google Scholar 

  3. 3.

    M. Furis, A. N. Cartwright, H. Wu, and W. J. Schaff, Appl. Phys. Lett. 83 (17), 3486 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    N. Grandjean, J. Massies, and M. Leroux, Appl. Phys. Lett. 74 (16), 2361 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    P. Lefebvre, J. Allegre, B. Gil, H. Mathieu, N. Grandjean, M. Leroux, J. Massies, and P. Bigenwald, Phys Rev B 59 (23), 15363 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    D. Gammon, S. Rudin, T. L. Reinecke, D. S. Katzer, and C. S. Kyono, Phys Rev B 51 (23), 16785 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    M. Sugawara, T. Fujii, M. Kondo, K. Kato, K. Domen, S. Yamazaki, and K. Nakajima, Appl. Phys. Lett. 53 (23), 2290 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    X. N. Zhang, Y. Shiraki, H. Yaguchi, K. Onabe, and R. Ito, J Vac Sci Technol B 12 (4), 2293 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    K. T. Tsen, D. K. Ferry, A. Botchkarev, B. Sverdlov, A. Salvador, and H. Morkoc, Appl. Phys. Lett. 71 (13), 1852 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    B. C. Lee, K. W. Kim, M. Dutta, and M. A. Stroscio, Phys Rev B 56 (3), 997 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    A. K. Viswanath, J. I. Lee, D. Kim, C. R. Lee, and J. Y. Leem, Phys Rev B 58 (24), 16333 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    N. Grandjean and J. Massies, Appl. Phys. Lett. 71 (13), 1816 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    C. Kim, I. K. Robinson, J. Myoung, K. H. Shim, and K. Kim, J. Appl. Phys. 85 (8), 4040 (1999).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by ANC’s NSF CAREER Grant #9733720, ONR YIP Grant #N00014-00-1-0508, a Defense University Research Initiative on Nanotechnology Grant #F496200110358 through the Air Force Office of Scientific Research, and WJS’s NSF Grant #ECS-0123453 and DARPA through Army Research Office Grant #DAAD19-02-0199.

Author information



Corresponding author

Correspondence to Madalina Furis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Furis, M., Cartwright, A.N., Wu, H. et al. Emission Mechanisms in UV Emitting GaN/AlN Multiple Quantum Well Structures. MRS Online Proceedings Library 798, 170–175 (2003). https://doi.org/10.1557/PROC-798-Y10.5

Download citation