Detailed Modeling of Structure and Deformation of Glassy Polymers


The molecular structure of macromolecules determines to a very large extent the macroscopic properties of the polymers they make up, and delimits what variations in properties can potentially be effected by processing. It is, therefore, important to understand and to be able to reliably predict the relevant properties of polymers and the limits of these properties upon treatment from the knowledge of the molecular structure of the constituent chains. For many properties of amorphous polymeric glasses correlations have been introduced in the last decades; some of them have been very useful [1–3], but they lack basic understanding of the processes and mechanisms operative in the generation of the properties in question. Their application is, by definition, limited to interpolation in that part of “chemical structure space” used as basis for the correlation. Prediction implies the power of extrapolation and, consequently, some use of first-principle methods. Remarkably little such work [1, 4–6] has been done to date on amorphous polymeric glasses. We have recently begun to investigate the atomistic-level modeling of structure and properties of amorphous, “fully relaxed” polymeric glasses [7–9].

This is a preview of subscription content, access via your institution.


  1. 1.

    R.N. Haward, J.R. MacCallum, Polymer, 12, 189 (1971)

    CAS  Article  Google Scholar 

  2. 2.

    D.W. van Krevelen, P.J. Hoftyzer, Properties of Polymers, (Elsevier Science Publishing Company, Amsterdam, 1976).

    Google Scholar 

  3. 3.

    D.H. Kaelble, Computer-Aided Design of Polymers and Composites, (Marcel Dekker Inc., Nev York, 1985).

    Google Scholar 

  4. 4.

    I.V. Yannas, in Proceedings of the International Symposium on Macromolecules, Rio de Janeiro, July 26–31, 1975, edited by E. Mano, (Elsevier, Amsterdam, 1975).

    Google Scholar 

  5. 5.

    I.V. Yannas, R.R. Luise, J. Macromol. Sci., Phys., Β21, 443 (1982)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Termonia, P. Meakin, P. Smith, Macromolecules , 18, 2246 (1985)

    CAS  Article  Google Scholar 

  7. 7.

    D.N. Theodorou, U.W. Suter, Macromolecules, 18, 1467 (1985)

    CAS  Article  Google Scholar 

  8. 8.

    D.N. Theodorou, U.W. Suter, Macromolecules, 19, 139 (1986)

    CAS  Article  Google Scholar 

  9. 9.

    D.N. Theodorou, U.W. Suter, Macromolecules, 19, 379 (1986)

    CAS  Article  Google Scholar 

  10. 10.

    M.H. Cohen, D. Turnbull, Nature (London), 203, 964 (1964)

  11. 11.

    D.N. Theodorou, U.W. Suter, J. Chem. Phys., 82, 955 (1985)

    CAS  Article  Google Scholar 

  12. 12.

    U.W. Suter, P. Neuenschwander , Macromolecules, 14, 528 (1981)

    CAS  Article  Google Scholar 

  13. 13.

    J.H. Weiner, Statistical Mechanics of Elasticity., (Wiley-Interscience Publications, New York, 1983).

    Google Scholar 

  14. 14.

    T. Egami, K. Maeda, V. Vitek, Philos. Mag., 41, 883 (1980)

    CAS  Article  Google Scholar 

  15. 15.

    D. Srolovitz, V. Vitek, T. Egami, Acta Metall., 31, 335 (1983)

    CAS  Article  Google Scholar 

  16. 16.

    T. Egami, V. Vitek, J. Non-Cryst. Solids, 61–62, 499 (1984)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Doros N. Theodorou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Theodorou, D.N., Ludovice, P.J. & Suter, U.W. Detailed Modeling of Structure and Deformation of Glassy Polymers. MRS Online Proceedings Library 79, 387–396 (1986).

Download citation