Growth Structure, and Optical Properties of III-Nitride Quantum Dots

Abstract

Quasi-zero-dimensional (0D) semiconductors have been the subject of considerable interest which is stemmed from their unique physical properties which in turn are conducive to devices such as low threshold lasers and light polarization insensitive detectors, in addition to exciting basic physical phenomena. A laboratory analogue of 0D systems is semiconductor quantum dots (QDs) wherein the electronic states are spatially localized and the energy is fully quantized, loosely similar to an atomic system, making it more stable against thermal perturbations. In addition, the electronic density of states near the band gap is higher than in 3D and 2D systems, leading to a higher probability for optical transitions. Furthermore, the electron localization may dramatically reduce the scattering of electrons by bulk defects and reduce the rate of non-radiative recombination. Semiconductor based and metal based dots have been produced, the former via self-assembly and also by lithographic methods in many II-VI, III-V, and group IV semiconductor. The aim of this paper is focused on III-Nitride based quantum dots covering their production and optical properties, as well as reporting on the GaN quantum dots produced by molecular beam epitaxy utilizing standard, ripening, metal spray followed by nitridation methods.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S.T. Strite and H. Morkoç, “GaN, AlN, and InN: A Review,” J. Vacuum Science and Technology B10, 1237–1266 (1992).

    Article  Google Scholar 

  2. 2

    H. Morkoç, S. Strite, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, “A Review of Large Bandgap SiC, III-V Nitrides, and ZnSe Based II-VI Semiconductor Structures and Devices,” J. Appl. Phys. Reviews 76(3), 1363 (1994).

    Article  Google Scholar 

  3. 3

    S. N. Mohammad, A. Salvador, and H. Morkoç, “Emerging GaN Based Devices,” Proc. IEEE 83, 1306 (1995).

    CAS  Article  Google Scholar 

  4. 4

    S. N. Mohammad and H. Morkoç, “Progress and Prospects of Group III-V Nitride Semiconductors,” Progress in Quantum Electronics 20(5 and 6), 361–525 (1996).

    CAS  Article  Google Scholar 

  5. 5

    O. Ambacher, “Growth and Applications of Group III-Nitrides”, J. Phys. D: Appl. Phys. 31, 2653, (1998).

    CAS  Article  Google Scholar 

  6. 6

    Hadis Morkoç, Aldo Di Carlo and R. Cingolani, “GaN-Based Modulation Doped FETs and UV Detectors”, Solid State Electronics, 46(2), 157, (2002).

    Article  Google Scholar 

  7. 7

    S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, Defects, and Devices”, J. Appl. Phys. 86,1 (1999).

    CAS  Article  Google Scholar 

  8. 8

    J. M. Gérard, O. Cabrol, and B. Sermage, Appl. Phys. Lett., 68, 3123 (1996).

    Article  Google Scholar 

  9. 9

    Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40, 939 (1982).

    CAS  Article  Google Scholar 

  10. 10

    D. Huang, M. A. Reshchikov and H. Morkoç, “Growth, Structure, and Optical Properties of III-Nitride Quantum Dots”, in “Quantum Dots”, International Journal of High Speed Electronics Vol. 25, No. 1 pp. 79–110. (March 2002), Eds. E. Borovitskaya and M. S. Shur.

    Article  Google Scholar 

  11. 11

    D. Huang, Y. Fu, and H. Morkoç, “Preparation, Structural and Optical Properties of GaN based quantum dots”, in Ed. T. Steiner, Artech House.

  12. 12

    H. Morkoç, Nitride Semiconductors and Devices (Springer Verlag, Heidelberg, 1999, the second edition is in process); S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, Heidelberg, 1997).

    Google Scholar 

  13. 13

    M. Kuball, J. Gleize, Satoru Tanaka, and Yoshinobu Aoyagi, Appl. Phys. Lett. 78, 987 (2001).

    CAS  Article  Google Scholar 

  14. 14

    S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett., 69, 4096 (1996).

    CAS  Article  Google Scholar 

  15. 15

    X. Q. Shen, S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett., 72, 344 (1998).

    CAS  Article  Google Scholar 

  16. 16

    F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. L. Rouvière, and N. Pelekanos, J. Appl. Phys., 83, 7618 (1998).

    CAS  Article  Google Scholar 

  17. 17

    F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvière, N. T. Pelekanos, and G. Fishman, Phys. Rev. B, 58, R15989 (1998).

    CAS  Article  Google Scholar 

  18. 18

    B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, Appl. Phys. Lett., 75, 962 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Adam Li, Feng Liu, D.Y. Petrovykh, J.-L. Lin, J. Viernow, F. J. Himpsel, and M. G. Lagally, Phys. Rev. Lett, 85, 5380 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Kenneth E. Gonsalves, Sri Prakash Rangarajan, Greg Carlson, Jayant Kumar and Ke Yang, Appl. Phys. Lett, 71, 2175 (1997).

    CAS  Article  Google Scholar 

  21. 21

    E. Borsella, M.A. Garcia, G. Mattei, C. Maurizio, P. Mazzoldi, E. Cattaruzza, F. Gonella, G. Battaglin, A. Quaranta, and F. D'Acapito, J. Appl. Phys, 90 (9), 4467 (2001).

    CAS  Article  Google Scholar 

  22. 22

    S. Tanaka, M. Takeuchi, Y. Aoyagi, Jpn J. Appl. Phys, 39, (L831), (2000).

    CAS  Article  Google Scholar 

  23. 23

    U. Woggon, Optical Properties of Semiconductor QD, Springer, Berlin, Heidelberg, NY (1997).

    Google Scholar 

  24. 24

    H. Lipsanen, M. Sopanen, J. Ahopelto, Phys. Rev. B, 51, 13868 (1995).

    CAS  Article  Google Scholar 

  25. 25

    V. Chamard, T.H. Metzger, B. Daudin, C. Adelmann, H. Mariette and G. Mula, Appl. Phys Lett, 79, 1971 (2001).

    CAS  Article  Google Scholar 

  26. 26

    T. Talierco, P. Lefebvre, M. Gallart and A. Morel, J. Condensed Matter Phys., 13, 7027 (2001).

    Article  Google Scholar 

  27. 27

    F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).

    CAS  Article  Google Scholar 

  28. 28

    A. D. Andreev and E. P. O'Reilly, Physica E 10, 553 (2001).

    CAS  Article  Google Scholar 

  29. 29

    D. Das and A. C. Melissinos, Quantum Mechanics, (Gordon and Breach Science Publishers, New York, 1986).

    Google Scholar 

  30. 30

    G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, Appl. Phys. Lett., 68, 2541 (1996).

    CAS  Article  Google Scholar 

  31. 31

    V. Y. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Delson, I. P. Nikitina, A. S. Polkovnokov, A. N. Smirnov, and M. A. Jacobson, J. Appl. Phys. 82, 5097(1997).

    CAS  Article  Google Scholar 

  32. 32

    A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).

    CAS  Article  Google Scholar 

  33. 33

    H. Amano, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 2 27, L1384 (1998).

    Article  Google Scholar 

  34. 34

    W. Shan, R. J. Hauenstein, A. J. Fischer, J. J. Song, W. G. Perry, M. D. Bremser, R. F. Davis, and B. Goldenber, Phys. Rev. B 54, 13460 (1996).

    CAS  Article  Google Scholar 

  35. 35

    K. Shimada, T. Sota, and K. Suzuki, J. Appl. Phys. 84, 4951(1998).

    CAS  Article  Google Scholar 

  36. 36

    O. Martinez, M. Mazzoni, F. Rossi, N. Armani, G. Salviati, P. P. Lottici, and D. Bersani, Phys. Stat. Sol. (a), 195, pp.26–31, (2003).

    CAS  Article  Google Scholar 

  37. 37

    P. Ramvall, P. Riblet, S. Nomura, Y. Aoyagi, and S. Tanaka, J. Appl. Phys. 87, 3883 (2000).

    CAS  Article  Google Scholar 

  38. 38

    J. F. Nye, Physical Properties of Crystals, (Oxford University Press, Oxford, 1985).

    Google Scholar 

  39. 39

    F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).

    CAS  Article  Google Scholar 

  40. 40

    F. Bernardini, V. Fiorentini Physical Review B, 63, 193201 (2001).

    Article  CAS  Google Scholar 

  41. 41

    E. E. Mendez, G. Bastard, L. L. Chang, L. Esaki, H. Morkoç, and R. Fischer, Phys. Rev. B 26, 7101 (1982).

    CAS  Article  Google Scholar 

  42. 42

    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043 (1985).

    CAS  Article  Google Scholar 

  43. 43

    M. A. Reshchikov, J. Cui, F. Yun, P. Visconti, M. I. Nathan, R. Molnar, and H. Morkoç Fall MRS, 2000, Mat. Res. Soc. Symp. Proc. 639, G11.2 (2001).

    Google Scholar 

  44. 44

    F. Widmann, J. Simon, N. T. Pelekanos, B. Daudin, G. Feuillet, J. L. Rouviere, G. Fishman, Microelectronic Journal, 30, 353 (1999).

    CAS  Article  Google Scholar 

  45. 45

    J.M. Hayes, M. Kuball, A. Bell, I. Harrison, D. Korakakis, and C.T. Foxon, Appl. Phys. Lett. 75, 2097 (1999).

    CAS  Article  Google Scholar 

  46. 46

    J.M. Hayes, M. Kuball, Ying Shi, and J.H. Edgar, Jpn. J. Appl. Phys. 39, L710 (2000).

    CAS  Article  Google Scholar 

  47. 47

    J. Gleize, F. Demangeot, J. Frandon, and M. A. Renucci, F. Widmann and B. Daudin, Appl. Phys. Lett., 74, 703 (1999).

    CAS  Article  Google Scholar 

  48. 48

    J. Gleize, F. Demangeot, J. Frandon, M.A. Renucci, M. Kuball, B. Damilano, N. Grandjean, and J. Massies, Appl. Phys. Lett. 79, 686 (2001).

    CAS  Article  Google Scholar 

  49. 49

    A.D. Yoffe, Adv. Phys., 42, 173 (1993).

    CAS  Article  Google Scholar 

  50. 50

    N. Iizuka, N. Suzuk, Jpn J. Appl. Phys -1 39 (4B), 2376 (2000).

    CAS  Article  Google Scholar 

  51. 51

    J.C. Harris, T. Someya, S. Kako, K. Hoshino and Y. Arakawa, Appl. Phys. Lett. 77, 1005 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The VCU portion of this work was funded by grants from NSF (Drs U. Varshney, and L. Hess), and ONR (Dr. Y. S. Park), and AFOSR (Dr. G. L. Witt and T. Steiner). A. N. was supported by the Army Research Office and the National Research Council. The authors thank Prof. D. Huang and Dr. M. Reshchikov for useful discussions and contributions to the topic. M.K. would like to thank M. A. Renucci, J. Frandon and F. Demangeot (Toulouse) for use of their facility”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hadis orkoç.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

orkoç, H., Neogi, A. & Kuball, M. Growth Structure, and Optical Properties of III-Nitride Quantum Dots. MRS Online Proceedings Library 789, 334–352 (2003). https://doi.org/10.1557/PROC-789-N8.5.1/T6.5.1/Z6.5

Download citation