New Zinc and Cadmium Chalcogenide Structured Nanoparticles


The growth of 2D quantum dot quantum well (QDQW) nanocrystals in which a shell of CdSe is grown onto cores of ZnS and capped with a further shell of ZnS is reported. The red shift in the interband absorption and photoluminescence spectrum of the quantum dots (QDs) indicates relocalization of carriers from confinement in the ZnS core to the CdSe shell. The change in interband absorption energy utilizing the effective mass approximation with spherical symmetry was modeled, enabling an estimate of the CdSe thicknesses grown. 1.8nm and 2.5nm ZnS cores were selected as the base on which to grow the CdSe shells. Despite the 12% lattice mismatch between ZnS and CdSe, our results indicate that we have successfully grown CdSe shells approximately three monolayers thick onto 2.5nm ZnS core. Anything beyond a single monolayer of CdSe could not be grown onto the 1.8nm core, although some success was observed by incorporating a CdS graded layer in-between the ZnS core and CdSe shell. The effect of ZnS shell thickness on photoluminescence efficiency has also been studied with optimum shell thicknesses showing quantum yields as high as 52%. Growth of these nanocrystals represents a significant step in the development of strained nanocrystalline heterostructures.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 115, 8706, (1993)

    CAS  Article  Google Scholar 

  2. 2.

    A. Eychmüller, A. Mews and H. Weller, Chem. Phys. Lett., 208, 59 (1993).

    Article  Google Scholar 

  3. 3.

    A. Mews A. Eychmüller, M. Giersig, D. Schooss, H. Weller, J. Phys. Chem., 98, 934, (1994)

    CAS  Article  Google Scholar 

  4. 4.

    A. Mews, A. V. Kadavanich, U. Banin, A. P. Alivisatos, Phys. Rev. B., 53, R13 242, (1996)

    CAS  Article  Google Scholar 

  5. 5.

    G. W Bryant, Phys. Rev. B., 52, R16 997 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    W. Jaskolski and G. W. Bryant, Phys. Rev. B., 57, R4237 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    R.-H. Xie, G. W. Bryant, S. Lee and W. Jaskolski, Phys. Rev. B., 65, 235306 (2002).

    Article  Google Scholar 

  8. 8.

    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B., 101, 9463 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    M. A. Hines and P. Guyot- Sionnest, J. Phys. Chem., 100, 468 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    L. Qu and X. Peng, J. Am. Chem. Soc. 124, 2049 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    S.A. Crooker, T. Barrick, J. A. Hollingsworth and V. I. Klimov., App. Phys. Lett., 82, 2793 (2003)

    CAS  Article  Google Scholar 

  12. 12.

    K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo and M. G. Bawendi., Phys. Rev. B, 63, 205316 (2001)

    Article  Google Scholar 

  13. 13.

    R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles and M. G. Bawendi., Phys. Rev. Lett., 85, 3301 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher and D. J. Nesbitt, J. Chem Phys., 112, 3117 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    Ian G. Dance, Anna Choy and Marcia L. Scudder, J. Am. Chem. Soc., 106, 6285 (1984).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. M. Daniels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daniels, S.M., O’Brien, P., Pickett, N.L. et al. New Zinc and Cadmium Chalcogenide Structured Nanoparticles. MRS Online Proceedings Library 789, 282–287 (2003).

Download citation