Energy exchange between optically excited Silicon Nanocrystals and Molecular Oxygen


We report on the photosensitizing properties of optically excited Silicon (Si) nanocrystal assemblies that are employed for an efficient generation of singlet oxygen. Spin triplet state excitons confined in Si nanocrystals transfer their energy to molecular oxygen (MO) adsorbed on the nanocrystal surface. This process results in a strong suppression of the photoluminescence (PL) from the Si nanocrystal assembly and in the excitation of MO from the triplet ground state to singlet excited states. The high efficiency of the energy transfer if favored by a broad energy spectrum of photoexcited excitons, a long triplet exciton lifetime and a highly developed surface area of the nanocrystal assembly. Due to the specifics of the coupled system Si nanocrystal–oxygen molecule all relevant physical parameters describing the photosensitization process are accessible experimentally. This includes the role of resonant and phonon-assisted energy transfer, the dynamics of energy transfer, and its mechanism.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. M. Agranovich, and M. D. Galadin, Electronic excitation energy transfer in condensed matter (North-Holland Publishing Company, Amsterdam, New York, Oxford, 1982).

    Google Scholar 

  2. 2.

    D. L. Andrews, and A. A. Demidov, Resonance Energy Transfer (Wiley Publishers, 1999).

    Google Scholar 

  3. 3.

    A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    P. H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972).

    CAS  Article  Google Scholar 

  5. 5.

    V. N. Abakumov, V. I. Perel, and I. N. Yassievich, in Nonradiative Recombination in Semiconductors, edited by V. M. Agranovich and A. A. Maradudin, Modern Problems in Condensed Matter Science Vol. 33 (North-Holland, Amsterdam, 1991).

  6. 6.

    W. Weber, Phys. Rev. B. 15, 4789 (1977).

    CAS  Article  Google Scholar 

  7. 7.

    D. Kovalev, E. Gross, N. Künzner, and F. Koch, V. Yu. Timoshenko, M. Fujii, Phys. Rev. Lett. 89, 137401 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, V. Yu. Timoshenko, and M. Fujii, Phys. Rev. B 68, 115405 (2003).

    Article  Google Scholar 

  9. 9.

    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

    CAS  Article  Google Scholar 

  10. 10.

    D. R. Kearns, and A. J. Stone, J. Chem. Phys. 55, 3383 (1971).

    CAS  Article  Google Scholar 

Download references


This work is supported by Industrial Technology Research Grant Program in ‘02 from New Energy and Industrial Technology Development Organization (NEDO), Japan and Deutsche Forschungsgemeinschaft (KO 1966/5-1). V.Yu. Timoshenko and M. Fujii are grateful to the AvH Foundation.

Author information



Corresponding author

Correspondence to E. Gross.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, E., Kovalev, D., Künzner, N. et al. Energy exchange between optically excited Silicon Nanocrystals and Molecular Oxygen. MRS Online Proceedings Library 789, 228–233 (2003).

Download citation