Vapor-Phase Synthesis and Surface Functionalization of ZnSe Nanoparticles in a Counterflow Jet Reactor

Abstract

Compound semiconductor nanocrystals (quantum dots) exhibit unique size-dependent optoelectronic properties making them attractive for a variety of applications, including ultrasensitive biological detection, high-density information storage, solar energy conversion, and photocatalysis. There is presently a great need for developing scalable techniques that allow efficient synthesis, size control, and functionalization of quantum dots, without a loss of the desirable optical properties. We report experimental results on the properties and surface modification of ZnSe nanoparticles grown by a continuous vapor-phase technique utilizing an axisymmetric counterflow jet reactor. Luminescent ZnSe nanocrystals were obtained at room temperature by reacting vapors of dimethylzinc:triethylamine adduct with hydrogen selenide, diluted in a hydrogen carrier gas. The two reactants were supplied from opposite inlets of the counterflow jet configuration and initiated particle nucleation in a region near the stagnation point of the laminar flow field. Surface modification of nanoparticles by adsorption of 1-pentanethiol was used to control the rate of particle coalescence. The counterflow jet technique can be scaled up for commercial production and is compatible with other vapor-phase processing techniques used in the microelectronics industry.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. P. Alivisatos, Science, 271, 933 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci., 30, 545 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    A. Eychmuller, J. Phys. Chem. B, 104, 6514 (2000).

    Article  Google Scholar 

  4. 4.

    T. Trindade, P. O'Brien, and N. L. Pickett, Chem. Mater., 13 (11), 3843 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    M. T. Swihart, Curr. Opin. Colloid In., 8, 127 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B, 102 (19), 3655 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    N. Chestnoy, R. Hull, L. E. Brus, J. Phys. Chem., 85 (4), 2237 (1986).

    CAS  Article  Google Scholar 

  8. 8.

    G. Li and M. Nogami, J. Appl. Phys., 75 (8), 4276 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    D. Sarigiannis, J. D. Peck, G. Kioseoglou, A. Petrou, and T. J. Mountziaris, App. Phys. Lett., 80 (21), 4024 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    M. R. Zachariah and M. J. Carrier, J. Aerosol Sci., 30 (9), 1139 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    J. D. Peck, T. J. Mountziaris, S. Stoltz, A. Petrou, and P. Mattocks, J. Cryst. Growth, 170 (1-4), 523 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    K. E. J. Lehtinen and M. R. Zachariah, J. Aerosol Sci., 33, 357 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    J. Warnock and D. D. Awschalom, Phys. Rev. B, 32, 5529 (1985).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge contributions from M. Koutsona, G. Kioseoglou, G. Itskos, G. Karanikolos, J. Wang, B. Kostova, T. C. Lee, P. Bush, and L. Guo, and financial support from the National Science Foundation and from SUNY-Buffalo (IRCAF Program).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. J. Mountziaris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarigiannidis, C., Petrou, A. & Mountziaris, T.J. Vapor-Phase Synthesis and Surface Functionalization of ZnSe Nanoparticles in a Counterflow Jet Reactor. MRS Online Proceedings Library 789, 187–192 (2003). https://doi.org/10.1557/PROC-789-N15.54

Download citation