GaP Nanostructures: Nanowires, Nanobelts, Nanocables, and Nanocapsules


Various GaP nanostructures such as nanowires, nanobelts, nanocables, and nanocapsules were synthesized by sublimation of ball-milled powders. They have a single-crystalline zinc blende structure with [111] growth direction. The morphology and structure were controlled by reactant gas, growth time, flow rate, and growth temperature. The size, morphology and properties of the nanostructures were examined by scanning electron microscopy, transmission electron microscopy, electron energy-loss spectroscopy (EELS), electron diffraction, energy dispersive x-ray spectroscopy, powder x-ray diffraction, and Raman spectroscopy using a 514.5 nm argon ion laser. The photoluminescence was carried out using the 458 nm line of an argon ion laser as the excitation source. The GaP nanowires are straight, cylindrical, and smooth in surface, with mean diameter of 40 nm and length up to 300 mm. The nitrogen-doped nanobelts and nanowires were synthesized by ammonia ambient gas. EELS data reveals that the nitrogen doping occurs mainly in the surface region. The PL spectrum shows the typical isoelectronic bound exciton peaks in the range of 2.11~2.25 eV, suggesting a concentration of (1018 cm−3 nitrogen atoms. We also synthesized two types of GaP nanocables; GaP nanowire sheathed with the amorphous silicon oxide layers and with the graphite layers. The core-shell diameter is under 30 nm and the outerlayer can be removed by acid treatment to produce the 10 nm diameter GaP nanowires. The GaP encapsulated with BCN nanotubes were synthesized under the ammonia flow using the ball-milled carbon-containing boron oxide powders. The number of BCN layers is typically 10~20.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature (London) 409, 66 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature (London) 415, 617(2002).

    CAS  Article  Google Scholar 

  4. 4.

    L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature (London) 420, 57 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature (London) 421, 241 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    H. J. Choi, J. C. Johnson, R. He, S. -K. Lee, F. Kim, Pauzauskie, P.; Goldberger, J.; Saykelly, R. J.; Yang, P. J. Phys. Chem. B107, 8721 (2003).

    Article  Google Scholar 

  7. 7.

    X. Duan, C. M. Lieber, Adv. Mater. 12, 298 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    C. Tang, S. Fan, M. Lamy de la Chapelle, H. Dang, P. Li, Adv. Mater. 12, 1346 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, J. Vac. Sci. Technol. B 19, 1115(2001).

    CAS  Article  Google Scholar 

  10. 10.

    H. W. Seo, S. Y. Bae, J. Park, H. Yang, S. Kim, Chem. Commun. 2564 (2002).

    Google Scholar 

  11. 11.

    H. W. Seo, S. Y. Bae, J. Park, H. Yang, M. Kang, S. Kim, Appl. Phys. Lett. 82, 3752 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    H. W. Seo, S. Y. Bae, J. Park, M. Kang, S. Kim, Chem. Phys. Lett. 378, 420 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    J. I. Pankove, Optical processes in Semiconductors, Dover, New York (1971)

    Google Scholar 

  14. 14.

    V. K. Bazhenov and V. I. Fistul', Sov. Phys. Semicond. 18, 843 (1984).

    Google Scholar 

  15. 15.

    A. S. Nasibov, N. N. Mel'nik, I. V. Ponomarev, S. V. Romanko, S. B. Topchii, A. N. Obraztsov, M. Yu Bashtanov, A. A. Krasnovskii, Quantum Electron. 28, 40 (1998).

    Article  Google Scholar 

  16. 16.

    F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    CAS  Article  Google Scholar 

  17. 17.

    Y. K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Appl. Phys. Lett. 80, 2559 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    C. Y. Zhi, X. D. Bai, E. G. Wang, Appl. Phys. Lett. 80, 3590 (2002).

    CAS  Article  Google Scholar 

Download references


SEM and X-ray diffraction analysis were performed at Korea Basic Research Institute in Seoul.

Author information



Corresponding author

Correspondence to Hee Won Seo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, H.W., Bae, S.Y. & Park, J. GaP Nanostructures: Nanowires, Nanobelts, Nanocables, and Nanocapsules. MRS Online Proceedings Library 789, 97–102 (2003).

Download citation