Evaluation of tetrakis(diethylamino)hafnium Precursor in the Formation of Hafnium Oxide Films Using Atomic Layer Deposition


Due to their compatibility with silicon interface and high dielectric constant, films containing hafnium oxide are becoming strong candidates in replacing silicon oxynitride as the gate dielectric layer in CMOS devices. To achieve ultimate conformality and thickness control, atomic layer deposition is receiving much more attention in recent years for nanometer size film applications. For hafnium oxide deposition by ALD, metal chlorides have traditionally been used as precursors with moisture being the co-reactant; however for gate oxide applications, metal chlorides are not considered suitable due to the corrosive nature of these compounds and the risks of film contamination. Hence, researchers are exploring alternate organometallic precursors in a CVD process with oxygen being the co-reactant. In this work, tetrakis (diethylamino) hafnium precursor is used in an ALD process with moisture co-reactant to deposit hafnium oxide films onto H-terminated Si substrate in a temperature regime of 200 to 350 C. Film composition is determined by x-ray analysis and is found to be stoichiometric without residue from ligand decomposition. Film thickness and uniformity is measured as a function of substrate temperature and reagent pulsing characteristics. These results will be presented and compared with that obtained with the more conventional hafnium chloride precursor.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. E. Braun, “High-k Materials Challenge Deposition, Etch, and Metrology”, Semiconductor International, ed. P. Singer (Reed Electronics Group) November 55 (2002)

  2. 2.

    2.G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    CAS  Article  Google Scholar 

  3. 3.

    G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. Urdahl, Opt. Lett. 73 1517 (1998)

    CAS  Google Scholar 

  4. 4.

    A. I. Kingon, J.-P. Maria, and S. K. Streiffer, Nature (London) 406, 1032 (2000)

    CAS  Article  Google Scholar 

  5. 5.

    B. W. Bush, W. H. Schulte, E. Garfunkel, T. Gustafsson, W. Qi, J. Nich, and J. Lee, Phys. Rev B 62 R13290 (2000)

    Article  Google Scholar 

  6. 6.

    M. Copel, M. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 76 436 (2000)

    CAS  Article  Google Scholar 

  7. 7.

    G. Lucovsky and J. C. Phillips, Microelectron. Eng. 48 291 (1999)

    CAS  Article  Google Scholar 

  8. 8.

    8.C. T. Shu, Y. K. Su, and M. Yokoyama, Jpn J. Appl. Phys., Part 1 31, 2501 (1992)

    Article  Google Scholar 

  9. 9.

    9.K. Kukli, J. Aarik, A. Aidla, H. Simon, M. Ritala, and M. Leskela, Appl. Surf. Sci. 112, 236 (1997)

    CAS  Article  Google Scholar 

  10. 10.

    M. Gutowski, J. E. Jaffe, C-L Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Mat. Res. Soc. Symp. Proc. 716, B3.2.1 (2002)

    Google Scholar 

  11. 11.

    B. H. Lee, L. Kang, R. Nieh, W-J Qi, and J. C. Lee, Appl. Phys. Lett. 76 (14), 1926 (2000)

    CAS  Article  Google Scholar 

  12. 12.

    Y. Ohshita, A. Ogura, A. Hoshino, S. Hiiro, H. Machida, J. of Crystal Growth 233, 292 (2001)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Ohshita, A. Ogura, A. Hoshino, T. Suzuki, S. Hiiro, H. Machida, J. of Crystal Growth 235, 365 (2002)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Ohshita, A. Ogura, A. Hoshino, S. Hiiro, T. Suzuki, H. Machida, Thin Solid Films 406, 215 (2002) HfCl4 ALD

    CAS  Article  Google Scholar 

  15. 15.

    J. Aarik, A. Aidla, H. Mandar, V. Sammelselg, T. Uustare, J. of Crystal Growth 220, 105 (2000)

    CAS  Article  Google Scholar 

  16. 16.

    J. Aarik, A. Aidla, H. Mandar, T. Uustare, K. Kukli, M. Schuisky, Appl. Surf. Sci. 173, 15 (2001)

    CAS  Article  Google Scholar 

  17. 17.

    J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, V. Sammelselg, Thin Solid Films 340, 110 (1999)

    CAS  Article  Google Scholar 

  18. 18.

    M.-H Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, Appl. Phys. Lett. 81(3), 472 (2002)

    CAS  Article  Google Scholar 

  19. 19.

    M Cho, J. Park, H. B. Park, C. S. Hwang, J. Jeng, and K. S. Hyun, Appl. Phys. Lett. 81(2), 334 (2002)

    CAS  Article  Google Scholar 

  20. 20.

    K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskela, Chem. Vap. Dep. 8(5), 199 (2002)

    CAS  Article  Google Scholar 

  21. 21.

    N. D. Denisova, E. K. Safronov, A. I. Pustil’nik, and O. N. Bystrova, Russ. J. Phys. Chem. 41 (1), 30–33 (1967)

    Google Scholar 

  22. 22.

    L. A. Nisel’son, T. D. Sokolova, and V. I. Stolyarov, Russ. J. Phys. Chem. 41 (7), 884–886 (1967)

    Google Scholar 

  23. 23.

    M. A. Alam, presented at the 1992 MRS Fall Meeting (Symposium N), Boston, MA 1992 (unpublished)

  24. 24.

    A.C. Dillon, A.W. Ott, J.D. Way and S.M. George Surface Science. 322, 230–242 (1995)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ronald Inman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inman, R., Deshpande, A. & Jursich, G. Evaluation of tetrakis(diethylamino)hafnium Precursor in the Formation of Hafnium Oxide Films Using Atomic Layer Deposition. MRS Online Proceedings Library 765, 310 (2002). https://doi.org/10.1557/PROC-765-D3.10

Download citation