Large Area 6H- and 4H-SiC Photoconductive Switches


Photoconductive Semiconductor Switches (PCSS) were fabricated in planar structures on high resistivity 4H-SiC and conductive 6H-SiC and tested at DC Bias voltages up to 1000 V. The gap spacing between the electrodes is 1 mm. The average on-state resistance and the ratio of on-state to off-state currents were about 20 Ω and 3×1011 for 4H-SiC, and 60 Ω and 6.6×103 for 6H-SiC, respectively. The typical maximum switch current at 1000 V is about 49 A for 4H-SiC. Photoconductivity pulse widths for all applied voltages were 8-10 ns. The observed performance is due in part to the removal of the surface damage by high temperature H2 etching and surface preparation. Atomic Force Microscopy (AFM) images revealed that very good surface morphology, atomic layer flatness and large step widths were achieved with this surface treatment and these atomically smooth surfaces likely contributed to the excellent switching performance of these devices.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Nakashima, H. Matsunami, S. Yoshida and H. Harima, Silicon Carbide and Related Materials, 1995, Institute of Physics Conference Series No. 142, IOP publishing, Bristol, 1996.

  2. 2.

    H. Morkoç, S. Strite, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363, 1994.

    Article  Google Scholar 

  3. 3.

    J. A. Cooper, M.R. Melloch, J.M. Woodall, J. Spitz, K. J. Schoen, and J. Henning, Mater. Sci. Forum, 264-268, 895, 1998,

    Google Scholar 

  4. 4.

    Y. S. Park, SiC Materials and Devices, Semiconductors and Semimetals, 52, Academic Press, San Diego, 1998.

  5. 5.

    J. Edmond, H. Kong, A. Suvorov, D. Waltz, and C. Carter, Phys. Stat. Sol. (a) 162, 481, 1997.

    CAS  Article  Google Scholar 

  6. 6.

    Properties of Advanced Semiconductor Materials, edited by M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur (John Wiley & Sons Inc, New York), 2001.

  7. 7.

    P. G. Neudeck, Institute of Physics Conference Series 141, (San Diego, CA), p. 1–6, 1994

    Google Scholar 

  8. 8.

    High Power Optically activated Solid-State Switches, edited by A. Rosen and F. Zutavern (Artech House, Boston), 1994.

  9. 9.

    N. E. Islam, E. Schumiloglu and C. B. Fleddermann, Appl. Phys. Lett, 73(14), 1988, 1998.

    Google Scholar 

  10. 10.

    P. S. Cho, J. Goldhar, Chi H. Lee, S. E. Saddow and P. Neudeck, J. Appl. Phys. 77(4), 1591, 1995.

    CAS  Article  Google Scholar 

  11. 11.

    S. E. Saddow, P. S. Cho, J. Goldhar, F. Barry McLean, J. W. Palmour and C. H. Lee, Inst. Phys. Conf. Ser. No. 137: Chapter 6, (Springer-Verlag), p. 573, 1994.

    Google Scholar 

  12. 12.

    S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor and G. L. Harris, Mater. Sci. and Eng. B, 46, 147, 1997.

    Article  Google Scholar 

  13. 13.

    H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, N. Shohata, Appl. Phys. Lett., 66(4), 460, 1995.

    CAS  Article  Google Scholar 

  14. 14.

    Y. Elezzabi, H. Houtman and J. Meyer, IEEE Trans on Plasma Science, 22, 1043, 1994.

    CAS  Article  Google Scholar 

  15. 15.

    T. S. Sudarshan, G. Gradinaru, G. Korony, W. Mitchel and R. H. Hopkins, Appl. Phys. Lett, 67(23), 3435, 1995.

    CAS  Article  Google Scholar 

  16. 16.

    N. Onojima, J. Suda, and H. Matsunami, Appl. Phys. Lett, 80(1), 76, 2001.

    Article  Google Scholar 

  17. 17.

    S. Dogan, A. Teke, D. Huang, and H. Morkoç, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, Appl. Phys. Lett., in press, 2003.

Download references

Author information



Corresponding author

Correspondence to S. Doğan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doğan, S., Yun, F., Roberts, C.B. et al. Large Area 6H- and 4H-SiC Photoconductive Switches. MRS Online Proceedings Library 764, 72 (2002).

Download citation